Skip to main content

Advertisement

Log in

Efficiency and scaling of an ultrashort-pulse high-repetition-rate laser-driven X-ray source

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Technical issues and performance of a high-repetition-rate ultrafast-laser-based X-ray source have been studied experimentally in the context of developing a dedicated laboratory-based tool for combustion diagnostics. X-ray emission from numerous elemental materials have been investigated to compare with analytical based expectations for yield and efficiency, as well as to evaluate advantages of some materials for operational issues such as debris production and degree of efficiency enhancement utilizing various illumination configurations. A weak inverse scaling of conversion efficiency with atomic number was observed. Broadband energy conversion efficiency of approximately 10−5 and yield greater than 1010 photons/s have been measured with numerous target elements. Application of a pre-pulse significantly enhances conversion efficiency, and the enhancement factor depends on material. Thus, previous optimizations must be performed in the atomic number variation as well. Additionally, the efficiency enhancement associated with p-polarization incidence (relative to s-polarization) is observed to depend on base material reflectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ch. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C.W. Siders, F. Rksi, J.A. Squier, B.C. Walker, K.R. Wilson, C.P.J. Barty, Nature 398, 310 (1999)

    Article  ADS  Google Scholar 

  2. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, M. Kammler, Phys. Rev. Lett. 87, 225701 (2001)

    Article  ADS  Google Scholar 

  3. M. Croft, I. Zakharchenko, Z. Zhong, Y. Gurlak, J. Hastings, J. Hu, R. Holtz, M. DaSilva, T. Tsakalakos, J. Appl. Phys. 92, 578 (2002)

    Article  ADS  Google Scholar 

  4. K. Sokolowski-Tinten, D. von der Linde, J. Phys. Condens. Matter 16, R1517 (2004)

    Article  ADS  Google Scholar 

  5. C.W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K.R. Wilson, D. von der Linde, C.P.J. Barty, Science 286, 1340 (1999)

    Article  Google Scholar 

  6. W. Rozmus, V.T. Tikhonchuk, Phys. Rev. A 42, 7401 (1990)

    Article  ADS  Google Scholar 

  7. W. Rozmus, V.T. Tikhonchuk, R. Cauble, Phys. Plasmas 3, 360 (1996)

    Article  ADS  Google Scholar 

  8. T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, H. Schwoerer, E. Förster, R. Sauerbrey, Appl. Phys. B 72, 15 (2001)

    Article  ADS  Google Scholar 

  9. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, E. Förster, P. Audebert, J.P. Geindre, J.C. Gauthier, D. Hulin, Meas. Sci. Technol. 12, 1841 (2001)

    Article  ADS  Google Scholar 

  10. Y. Jiang, W. Li, G. Cao, T. Lee, G. Ketwaroo, Ch. Rose-Petruck, Applications of X-rays generated from lasers and other bright sources II, in Proc. SPIE (The International Society for Optical Engineering), vol. 4504, ed. by G. Kyrala, J.-C. Gauthier (SPIE, Bellingham, 2001)

    Google Scholar 

  11. D. Boschetto, G. Mourou, A. Rousse, A. Mordovanakis, B. Hou, J. Nees, D. Kumah, R. Clarke, Appl. Phys. Lett. 90, 11106 (2007)

    Article  ADS  Google Scholar 

  12. Y. Jiang, T. Lee, W. Li, G. Ketwaroo, C.G. Rose-Petruck, Opt. Lett. 27, 963 (2002)

    Article  ADS  Google Scholar 

  13. N. Zhavoronkov, Y. Gritsai, G. Korn, T. Elsaesser, Appl. Phys. B 79, 663 (2004)

    Article  ADS  Google Scholar 

  14. M. Hagedorn, J. Kutzner, G. Tsilimis, H. Zacharias, Appl. Phys. B 77, 49 (2003)

    Article  Google Scholar 

  15. G. Korn, A. Thoss, H. Stiel, U. Vogt, M. Richardson, T. Elsaesser, M. Faubel, Opt. Lett. 27, 866 (2002)

    Article  ADS  Google Scholar 

  16. B. Hou, J.A. Nees, W. Theobald, G. Mourou, L.M. Chen, J.-C. Kieffer, A. Krol, C.C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004)

    Article  ADS  Google Scholar 

  17. O. Albert, H. Wang, D. Liu, Z. Chang, G. Mourou, Opt. Lett. 25, 1125 (2000)

    Article  ADS  Google Scholar 

  18. R.J. Tompkins, I.P. Mercer, M. Fettweis, C.J. Barnett, D.R. Klug, L.G. Porter, I. Clark, S. Jackson, P. Matousek, A.W. Parker, M. Towrie, Rev. Sci. Instrum. 69, 3113 (1998)

    Article  ADS  Google Scholar 

  19. U. Teubner, C. Wülker, W. Theobald, E. Förster, Phys. Plasmas 2, 972 (1995)

    Article  ADS  Google Scholar 

  20. L. Chen, P. Forget, R. Toth et al., Laser generated and other lab. X-ray and EUV sources, in Proc. SPIE, vol. 5196 (SPIE, Bellingham, 2004), p. 337

    Chapter  Google Scholar 

  21. J. Kutzner, M. Silies, T. Witting, G. Tsilimis, H. Zacharias, Appl. Phys. B 78, 949 (2004)

    Article  ADS  Google Scholar 

  22. Ch. Reich, P. Gibbon, I. Uschmann, E. Förster, Phys. Rev. Lett. 84, 4846 (2000)

    Article  ADS  Google Scholar 

  23. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, D. von der Linde, AIP Conf. Proc. 634, 11 (2002)

    Article  ADS  Google Scholar 

  24. M. Berglund, L. Rymell, H.M. Hertz, Appl. Phys. Lett. 69, 1683 (1996)

    Article  ADS  Google Scholar 

  25. L.A. Gizzi, D. Giulietti, A. Giulietti, P. Audebert, S. Bastiani, J.P. Geindre, A. Mysyrowicz, Phys. Rev. Lett. 76, 2278 (1996)

    Article  ADS  Google Scholar 

  26. D.D. Meyerhofer, H. Chen, J.A. Delettrez, B. Soom, S. Uchida, B. Yaakobi, Phys. Fluids B 5, 2584 (1993)

    Article  ADS  Google Scholar 

  27. H. Deutsch, K. Becker, B. Gstir, T.D. Märk, Int. J. Mass Spectrom. 213, 5 (2002)

    Article  Google Scholar 

  28. V.L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon, New York, 1964)

    Google Scholar 

  29. P. Gibbon, E. Förster, Plasma Phys. Control. Fusion 38, 769 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Rettig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rettig, C.L., Roquemore, W.M. & Gord, J.R. Efficiency and scaling of an ultrashort-pulse high-repetition-rate laser-driven X-ray source. Appl. Phys. B 93, 365–372 (2008). https://doi.org/10.1007/s00340-008-3151-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3151-y

PACS

Navigation