Skip to main content
Log in

Effects of ambient pressure on Cu Kα X-ray radiation with millijoule and high-repetition-rate femtosecond laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Hard Cu Kα X-ray radiation was generated with a millijoule and high-repetition-rate Ti: sapphire laser in air, helium or vacuum (2.7–1.3×104 Pa) ambient. The characteristic X-ray was obtained by focusing the 0.06–1.46 mJ/pulse, 100 fs, 1 kHz repetition femtosecond laser onto a solid copper target to a spot 4.8 μm in diameter. The relationship between Kα X-ray conversion efficiency and atmospheric conditions was explained with a simple electron collision model that suggested that the electron mean free path is an important parameter in the generation of ultrafast pulsed X-rays in any ambient condition. We also demonstrated a high-intensity X-ray source working in helium at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. More, Z. Zinamon, K.H. Warren, R. Falcone, M. Murnane, J. Phys. C 7 49, 43 (1988)

    Google Scholar 

  2. E.G. Gamaly, Laser Part. Beams 12, 185 (1994)

    Article  ADS  Google Scholar 

  3. P. Gibbon, E. Forster, Plasma Phys. Control. Fusion 38, 769 (1996)

    Article  ADS  Google Scholar 

  4. R. Fedosejevs, R. Ottmann, R. Sigel, G. Kühnle, S. Szatmari, F.P. Schafer, Phys. Rev. Lett. 64, 1250 (1990)

    Article  ADS  Google Scholar 

  5. D.F. Price, R.M. More, R.S. Walling, G. Guethlein, R.L. Shepherd, R.E. Stewart, W.E. White, Phys. Rev. Lett. 75, 252 (1995)

    Article  ADS  Google Scholar 

  6. D.W. Forslund, J.M. Kindel, K. Lee, Phys. Rev. Lett. 39, 284 (1977)

    Article  ADS  Google Scholar 

  7. K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller, Phys. Rev. E 62, 1202 (2000)

    Article  ADS  Google Scholar 

  8. E.S. Weibel, Phys. Fluids 10, 741 (1967)

    Article  ADS  Google Scholar 

  9. S.C. Wilks, Phys. Fluids B 5, 2603 (1993)

    Article  ADS  Google Scholar 

  10. S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Phys. Rev. Lett. 69, 1383 (1992)

    Article  ADS  Google Scholar 

  11. W. Rozmus, V.T. Tikhonchuk, R. Cauble, Phys. Plasmas 3, 360 (1996)

    Article  ADS  Google Scholar 

  12. K.G. Nakamura, S. Ishii, S. Ishitsu, M. Shiokawa, H. Takahashi, K. Dharmalingam, J. Irisawa, Y. Hironaka, K. Ishioka, M. Kitajima, Appl. Phys. Lett. 93, 061905 (2008)

    Article  ADS  Google Scholar 

  13. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C.W. Siders, F. Raksi, J.A. Squier, B.C. Walker, K.R. Wilson, C.P.J. Barty, Nature (London) 398, 310 (1999)

    Article  ADS  Google Scholar 

  14. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Forster, M. Kammler, M. Horn-von-Hoegen, D. von der Linde, Nature (London) 422, 287 (2003)

    Article  ADS  Google Scholar 

  15. A.M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, K.J. Gaffney, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A.G. MacPhee, D. Weinstein, D.P. Lowney, T.K. Allison, T. Matthews, R.W. Falcone, A.L. Cavalieri, D.M. Fritz, S.H. Lee, P.H. Bucksbaum, D.A. Reis, J. Rudati, P.H. Fuoss, C.C. Kao, D.P. Siddons, R. Pahl, J. Als-Nielsen, S. Duesterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, D. von der Linde, O. Hignette, F. Sette, H.N. Chapman, R.W. Lee, T.N. Hansen, S. Techert, J.S. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R.A. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, J.B. Hastings, Science 308, 392 (2005)

    Article  ADS  Google Scholar 

  16. D.M. Fritz, D.A. Reis, B. Adams, R.A. Akre, J. Arthur, C. Blome, P.H. Bucksbaum, A.L. Cavalieri, S. Engemann, S. Fahy, R.W. Falcone, P.H. Fuoss, K.J. Gaffney, M.J. George, J. Hajdu, M.P. Hertlein, P.B. Hillyard, M. Horn-von Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S.H. Lee, A.M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, É.D. Murray, A.J. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D.P. Siddons, K. Sokolowski-Tinten, Th. Tschentscher, D. von der Linde, J.B. Hastings, Science 315, 633 (2007)

    Article  ADS  Google Scholar 

  17. K. Scokilowski-Tinten, D. von der Linde, J. Phys. Condens. Matter 16, R1517 (2004)

    Article  ADS  Google Scholar 

  18. J. Chew, P. Lucas, S. Webber (eds.) (IEEE, Piscataway, 2003), p. 423

  19. R. Service, Science 298, 1356 (2002)

    Article  Google Scholar 

  20. M. Yoshida, Y. Fujimoto, Y. Hironaka, K.G. Nakamura, K. Kondo, M. Ohtani, H. Tsunemi, Appl. Phys. Lett. 73, 2393 (1998)

    Article  ADS  Google Scholar 

  21. E.C. Eder, G. Pretzler, E. Fill, K. Eidmann, A. Saemann, Appl. Phys. B 70, 211 (2000)

    Article  ADS  Google Scholar 

  22. E. Fill, J. Bayerl, R. Tommasini, Rev. Sci. Instrum. 73, 2190 (2002)

    Article  ADS  Google Scholar 

  23. C.W. Siders, A. Cavalleri, K. Sokolowski-Tinten, T. Guo, C. Toth, R. Jimenez, C. Rose-Petruck, M. Kammler, M. Horn von Hoegen, D. von der Linde, K.R. Wilson, C.P.J. Barty, SPIE Proc. 3776, 302 (1999)

    Article  ADS  Google Scholar 

  24. C.L. Rettig, W.M. Roquemore, J.R. Gord, Appl. Phys. B 93, 365 (2008)

    Article  ADS  Google Scholar 

  25. M. Hagedorn, J. Kutzner, G. Tsilimis, H. Zacharias, Appl. Phys. B 77, 49 (2003)

    Article  Google Scholar 

  26. C.G. Serbanescu, J.A. Chakera, R. Fedosejevs, Rev. Sci. Instrum. 78, 103502 (2007)

    Article  ADS  Google Scholar 

  27. N. Takeyasu, Y. Hirakawa, T. Imasaka, Rev. Sci. Instrum. 72, 3940 (2001)

    Article  ADS  Google Scholar 

  28. Y. Hironaka, K.G. Nakamura, K. Kondo, Appl. Phys. Lett. 77, 4110 (2000)

    Article  ADS  Google Scholar 

  29. W.M. Wood, C.W. Siders, M.C. Downer, Phys Rev. Lett. 67, 3523 (1991)

    Article  ADS  Google Scholar 

  30. B.M. Penetrante, J.N. Bardsley, W.M. Wood, C.W. Siders, M.C. Downer, J. Opt. Soc. Am. B 9, 2032 (1992)

    Article  ADS  Google Scholar 

  31. F.V. Hartemann, A.L. Troha, H.A. Baldis, A. Gupta, A.K. Kerman, E.C. Landahl, N.C. Luhmann Jr., J.R. van Meter, Astrophys. J. Suppl. Ser. 127, 347 (2000)

    Article  ADS  Google Scholar 

  32. T. Auguste, P. Monot, L.A. Lompre, G. Mainfray, C. Manus, Opt. Commun. 89, 145 (1992)

    Article  ADS  Google Scholar 

  33. Y.M. Li, J.N. Broughton, R. Fedosejevs, T. Tomie, Opt. Commun. 93, 366 (1992)

    Article  ADS  Google Scholar 

  34. D. Umstadter, Appl. Phys. 36, R151 (2003)

    ADS  Google Scholar 

  35. C.G. Serbanescu, J. Santiago, R. Fedosejevs, Proc. SPIE 5196, 344 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hada, M., Matsuo, J. Effects of ambient pressure on Cu Kα X-ray radiation with millijoule and high-repetition-rate femtosecond laser. Appl. Phys. B 99, 173–179 (2010). https://doi.org/10.1007/s00340-010-3902-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-3902-4

Keywords

Navigation