Skip to main content
Log in

Multi-band metamirrors for linear to circular polarization conversion with wideband and wide-angle performances

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Multi-band operation of the elements of electromagnetic systems can result in merging multiple systems and cost reduction. A challenge for multi-band operation is the circular polarization which is frequently a requirement for these systems. However, circular polarization can be obtained from linearly polarized waves using transmission-mode or reflection-mode linear to circular polarization converters. Therefore, advanced multi-band reflection-mode linear to circular polarization converters are proposed in this paper. Two versions of the polarizers are designed with different design methodologies. The first polarization converter has 3 dB axial ratio bandwidths of 29.3, 21.8, and 7.6% on 2, 8, and 12 GHz with 15° permitted incident angle difference. The second polarization converter with incident angle range of 25° (\(\theta _{{{\text{min}}}} = 23^\circ\) and \(\theta _{{{\text{max}}}} = 48^\circ\)) has 17.8, 10, and 22.5% bandwidths on 2, 5.5, and 8 GHz, respectively. In addition, the bandwidths can be improved to 32.1, 28.3, and 26.5% by reducing the incident angle range to 10° with \(\theta _{{{\text{min}}}} = 30^\circ\) and \(\theta _{{{\text{max}}}} = 40^\circ\). Finally, a prototype of the second polarization converter is fabricated and simulations are met by measurement results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. R.J. Mailloux, Phased Array Antenna Handbook. (Artech House, Boston, 2005)

    Google Scholar 

  2. J. Zhao, Y. Cheng, A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial. Appl. Phys. B 122(10 ), 255 (2016)

    Article  ADS  Google Scholar 

  3. Z. Wei, Y. Cao, Y. Fan, X. Yu, H. Li, Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Appl. Phys. Lett. 99(22), 221907 (2011)

    Article  ADS  Google Scholar 

  4. D.L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, A.V. Lavrinenko, Metamaterial polarization converter analysis: limits of performance. Appl. Phys. B 112(2) ), 143–152 (2013)

    Article  ADS  Google Scholar 

  5. D. Liu et al., Broadband asymmetric transmission and multi-band 90° polarization rotator of linearly polarized wave based on multi-layered metamaterial. Opt. Commun. 354, 272–276 (2015)

    Article  ADS  Google Scholar 

  6. J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, T. Jun Cui, Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial. Appl. Phys. Lett. 102(19), 191905 (2013)

    Article  ADS  Google Scholar 

  7. H. Tao, C.M. Bingham, A.C. Strikwerda, D. Pilon, D. Shrekenhamer, N.I. Landy, K. Fan, X. Zhang, W.J. Padilla, R.D. Averitt, Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys. Rev. B 78(24), 241103 (2008)

    Article  ADS  Google Scholar 

  8. H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, A dual band terahertz metamaterial absorber. J. Phys. D Appl. Phys. 43(22), 225102 (2010)

    Article  ADS  Google Scholar 

  9. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, F. Quanhong, L. Junjie, G. Changzhi, L. Hongqiang, Tunable mid-infrared coherent perfect absorption in a graphene meta-surface. Sci. Rep. 5, 13956 (2015)

    Article  ADS  Google Scholar 

  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)

    Article  ADS  Google Scholar 

  11. Y. Fan, N.-H. Shen, T. Koschny, C.M. Soukoulis, Tunable terahertz meta-surface with graphene cut-wires. ACS Photonics 2(1), 151–156 (2015)

    Article  Google Scholar 

  12. N. Zhang, P. Zhou, L. Zhang, X. Weng, J. Xie, L. Deng, Ultra-broadband absorption in mid-infrared spectrum with graded permittivity metamaterial waveguide structure. Appl. Phys. B 118(3 ), 409–415 (2015)

    Article  ADS  Google Scholar 

  13. F. Monticone, C.A. Valagiannopoulos, A. Alù, Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging. Phys. Rev. X 6(4), 041018 (2016)

    Google Scholar 

  14. M. Choi, S.H. Lee, Y. Kim, S.B. Kang, J. Shin, M.H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, B. Min, A terahertz metamaterial with unnaturally high refractive index. Nature 470(7334), 369–373 (2011)

    Article  ADS  Google Scholar 

  15. X. Yin, Z. Ye, J. Rho, Y. Wang, X. Zhang, Photonic spin hall effect at metasurfaces. Science 339(6126), 1405–1407 (2013)

    Article  ADS  Google Scholar 

  16. F. Garwe, C. Rockstuhl, C. Etrich, U. Hübner, U. Bauerschäfer, F. Setzpfandt, M. Augustin, T. Pertsch, A. Tünnermann, F. Lederer, Evaluation of gold nanowire pairs as a potential negative index material. Appl. Phys. B 84(1–2 ), 139–148 (2006)

    Article  ADS  Google Scholar 

  17. C.A. Balanis, Antenna Theory Analysis and Design. (Wiley, New York, 2005)

    Google Scholar 

  18. H.A. Wheeler, A helical antenna for circular polarization. Proc. IRE 35(12), 1484–1488 (1947)

    Article  Google Scholar 

  19. S.D. Targonski, D.M. Pozar, Design of wideband circularly polarized aperture-coupled microstrip antennas. IEEE Trans. Antennas Propag. 41(2), 214–220 (1993)

    Article  ADS  Google Scholar 

  20. M. Fartookzadeh, S.H. Mohseni Armaki, Multi-band conical and inverted conical printed quadrifilar helical antennas with compact feed networks. AEU Int J Electron Commun. 70(1), 33–39 (2016)

    Article  Google Scholar 

  21. J. Huang, C.P. microstrip array with wide axial ratio bandwidth and single feed L.P. elements, in Antennas and Propagation Society International Symposium, 1985

  22. H. Evans, P. Gale, B. Aljibouri, E.G. Lim, E. Korolkeiwicz, A. Sambell, Application of simulated annealing to design of serial feed sequentially rotated 2 × 2 antenna array. Electron. Lett. 36(24), 1987 (2000)

    Article  Google Scholar 

  23. M. Fartookzadeh, S.H. Mohseni Armaki, Dual-band circularly-polarized monopulse antenna system with single layer patches and separated feed networks. Prog. Electromag. Res. C 55, 43–52 (2014)

    Article  Google Scholar 

  24. M. Fartookzadeh, S.H.M. Armaki, Serial-feed for a circular patch antenna with circular polarization suitable for arrays. Int. J. RF Microw. Comput. Aided Eng. 24(5), 529–535 (2014)

    Article  Google Scholar 

  25. J. Kaschke, M. Wegener, Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Opt. Lett. 40(17), 3986 (2015)

    Article  ADS  Google Scholar 

  26. E. Doumanis, G. Goussetis, J.L. Gomez-Tornero, R. Cahill, V. Fusco, Anisotropic impedance surfaces for linear to circular polarization conversion. IEEE Trans. Antennas Propag. 60(1), 212–219 (2012)

    Article  ADS  Google Scholar 

  27. J. Wang, Z. Shen, W. Wu, K. Feng, Wideband circular polarizer based on dielectric gratings with periodic parallel strips. Opt. Express 23(10), 12533 (2015)

    Article  ADS  Google Scholar 

  28. Y. Liu, S. Xia, H. Shi, A. Zhang, Z. Xu, Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies. Appl. Phys. B 122(6), 1–8 (2016)

    Article  ADS  Google Scholar 

  29. Y.Z. Cheng, Y. Nie, Z.Z. Cheng, X. Wang, R.Z. Gong, Asymmetric chiral metamaterial circular polarizer based on twisted split-ring resonator. Appl. Phys. B 116(1), 129–134 (2014)

    Article  ADS  Google Scholar 

  30. L. Wu, M. Zhang, B. Zhu, J. Zhao, T. Jiang, Y. Feng, Dual-band asymmetric electromagnetic wave transmission for dual polarizations in chiral metamaterial structure. Appl. Phys. B 117(2), 527–531 (2014)

    Article  Google Scholar 

  31. X. Huang, D. Yang, S. Yu, L. Guo, L. Guo, H. Yang, Dual-band asymmetric transmission of linearly polarized wave using P-shaped metamaterial. Appl. Phys. B 117(2 ), 633–638 (2014)

    Article  Google Scholar 

  32. M. Fartookzadeh, S.H. Mohseni Armaki, Dual-band reflection-type circular polarizers based on anisotropic impedance surfaces. IEEE Trans. Antennas Propag. 64(2), 826–830 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. D.K. Barton, The 1993 Moscow air show. Microw. J. 37(5), 24–40 (1994)

    Google Scholar 

  34. E.N. Grossman, A. Luukanen, A.J. Miller, Terahertz active direct detection imagers, in Terahertz for Military and Security Applications II, Sept, 2004

  35. M. Fartookzadeh, S.H. Mohseni Armaki, Enhancement of dual-band reflection-mode circular polarizers using dual-layer rectangular frequency selective surfaces. IEEE Trans. Antennas Propag. 64, 4570–4574 (2016)

  36. D.K. Cheng, Field and Wave Electromagnetics. (Pearson Education India, New Delhi, 1989)

    Google Scholar 

  37. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A.V. Raisanen, S.A. Tretyakov, Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans. Antennas Propag. 56(6), 1624–1632 (2008)

    Article  ADS  Google Scholar 

  38. S. Verma, P. Kumar, Compact triple-band antenna for WiMAX and WLAN applications. Electron. Lett. 50(7), 484–486 (2014)

    Article  Google Scholar 

  39. N. Amani, M. Kamyab, A. Jafargholi, A. Hosseinbeig, J.S. Meiguni, Compact tri-band metamaterial-inspired antenna based on CRLH resonant structures. Electron. Lett. 50(12), 847–848 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fartookzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fartookzadeh, M. Multi-band metamirrors for linear to circular polarization conversion with wideband and wide-angle performances. Appl. Phys. B 123, 115 (2017). https://doi.org/10.1007/s00340-017-6696-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6696-9

Keywords

Navigation