Skip to main content
Log in

Metamaterial polarization converter analysis: limits of performance

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we analyze the theoretical limits of a metamaterial-based converter with orthogonal linear eigenpolarizations that allow linear-to-elliptical polarization transformation with any desired ellipticity and ellipse orientation. We employ the transmission line approach providing a needed level of the design generalization. Our analysis reveals that the maximal conversion efficiency for transmission through a single metamaterial layer is 50 %, while the realistic reflection configuration can give the conversion efficiency up to 90 %. We show that a double layer transmission converter and a single layer with a ground plane can have 100 % polarization conversion efficiency. We tested our conclusions numerically reaching the designated limits of efficiency using a simple metamaterial design. Our general analysis provides useful guidelines for the metamaterial polarization converter design for virtually any frequency range of the electromagnetic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.U. Jepsen, D.G. Cooke, M. Koch, Terahertz spectroscopy and imaging - modern techniques and applications. Laser Photonics Rev. 5(1), 124–166 (2011)

    Article  Google Scholar 

  2. T. Kleine-Ostmann, T. Nagatsuma, A review on terahertz communications research. J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011)

    Article  Google Scholar 

  3. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007)

    Article  ADS  Google Scholar 

  4. D. Molter, G. Torosyan, G. Ballon, L. Drigo, R. Beigang, Step-scan time-domain terahertz magneto-spectroscopy. Opt. Express 20(6), 26163–26168 (2012)

    Article  Google Scholar 

  5. J.B. Masson, G. Gallot, Terahertz achromatic quarter-wave plate. Opt. Lett. 31(2), 265–267 (2006)

    Article  ADS  Google Scholar 

  6. T. Arikawa, X. Wang, A.A. Belyanin, J. Kono, Giant tunable faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics. Opt. Express 20(17), 19484 (2012)

    Article  ADS  Google Scholar 

  7. A.C. Strikwerda, K. Fan, H. Tao, D.V. Pilon, X. Zhang, R.D. Averitt, Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies. Opt. Express 17(1), 136–149 (2009)

    Article  ADS  Google Scholar 

  8. S.C. Saha, Y. Ma, J.P. Grant, A. Khalid, D.R.S. Cumming. Imprinted terahertz artificial dielectric quarter wave plates. Opt. Express 18(12), 12168–12175 (2010)

    Article  Google Scholar 

  9. A. Drezet, C. Genet, T. Ebbesen, Miniature plasmonic wave plates. Phys. Rev. Lett. 101(4), 1–4 (2008)

    Article  Google Scholar 

  10. J.Y. Chin, M. Lu, T.J. Cui, Metamaterial polarizers by electric-field-coupled resonators. Appl. Phys. Lett. 93(25), 251903 (2008)

    Article  ADS  Google Scholar 

  11. J.Y. Chin, J.N. Gollub, J.J. Mock, R. Liu, C. Harrison, D.R. Smith, T.J. Cui, An efficient broadband metamaterial wave retarder. Opt. Express 17(9), 7640–7647 (2009)

    Article  ADS  Google Scholar 

  12. X.G. Peralta, E.I. Smirnova, A.K. Azad, H.-T. Chen, A.J. Taylor, I. Brener, J.F. O’Hara, Metamaterials for thz polarimetric devices. Opt. Express 17(2), 773–783 (2009)

    Article  ADS  Google Scholar 

  13. P. Weis, O. Paul, C. Imhof, R. Beigang, M. Rahm, Strongly birefringent metamaterials as negative index terahertz wave plates. Appl. Phys. Lett. 95(17), 171104 (2009)

    Article  ADS  Google Scholar 

  14. T. Li, S.M. Wang, J.X. Cao, H. Liu, S.N. Zhu, Cavity-involved plasmonic metamaterial for optical polarization conversion. Appl. Phys. Lett. 97(26), 261113 (2010)

    Article  ADS  Google Scholar 

  15. A. Roberts, L. Lin, Plasmonic quarter-wave plate. Opt. Lett. 37(11), 1820–1822 (2012)

    Article  ADS  Google Scholar 

  16. W. Sun, Q. He, J. Hao, L. Zhou, A transparent metamaterial to manipulate electromagnetic wave polarizations. Opt. Lett. 36(6), 927–929 (2011)

    Article  ADS  Google Scholar 

  17. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. Kong, C. Chan, L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99(6), 1–4 (2007)

    Article  Google Scholar 

  18. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, L. Zhou, Optical metamaterial for polarization control. Phys. Rev. A 80(2), 1–5 (2009)

    Google Scholar 

  19. A. Pors, M.G. Nielsen, G.D. Valle, M. Willatzen, O. Albrektsen, S.I. Bozhevolnyi, Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Opt. Lett. 36(9), 1626–1628 (2011)

    Article  ADS  Google Scholar 

  20. A.C. Strikwerda, R.D. Averitt, K. Fan, X. Zhang, G.D. Metcalfe, M. Wraback, Electromagnetic composite-based reflecting terahertz waveplates. Int. J. High Speed Electr. Syst. (IJHSES) 20(3), 583–588 (2011)

    Article  Google Scholar 

  21. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, Q.-H. Wei, Polarization conversion with elliptical patch nanoantennas. Appl. Phys. Lett. 101(2), 023101 (2012)

    Article  ADS  Google Scholar 

  22. R. Singh, E. Plum, W. Zhang, N.I. Zheludev, Highly tunable optical activity in planar achiral terahertz metamaterials. Opt. Express 18(13), 13425–13430 (2010)

    Article  ADS  Google Scholar 

  23. S.X. Li, Z.Y. Yang, J. Wang, M. Zhao, Broadband terahertz circular polarizers with single-and double-helical array metamaterials. J. Opt. Soc. Am. A 28(1), 19–23 (2011)

    Article  ADS  Google Scholar 

  24. M. Mutlu, A.E. Akosman, A.E. Serebryannikov, E. Ozbay, Asymmetric chiral metamaterial circular polarizer based on four u-shaped split ring resonators. Opt. Lett. 36(9), 1653–1655 (2011)

    Article  ADS  Google Scholar 

  25. Y. Zhao, M.A. Belkin, A. Alù, Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012)

    Article  ADS  Google Scholar 

  26. C. Sabah, H.G. Roskos, Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs. Prog. Electromagn. Res. 124, 301–314 (2012)

    Article  Google Scholar 

  27. J.K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, M. Wegener, Tapered gold-helix metamaterials as improved circular polarizers. Appl. Phys. Lett. 100(10), 101109 (2012)

    Article  ADS  Google Scholar 

  28. C. Caloz, T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach. (Wiley-IEEE Press, New York, 2006)

  29. J.D. Jackson, Classical electrodynamics, vol. 67, (Wiley, New York, 1999)

  30. N.J. Cronin, Microwave and optical waveguides. (Taylor & Francis, 1995)

  31. S. Tretyakov, Analytical modeling in applied electromagnetics. (Artech House Publishers, Boston, 2003)

  32. CST. Computer simulation technology. http://www.cst.com/

  33. R. Malureanu, P.U. Jepsen, S. Xiao, L. Zhou, D.G. Cooke, A. Andryieuski, A.V. Lavrinenko, Fractal Thz metamaterials: design, fabrication and characterisation. Proc. SPIE 7711, 77110M (2010)

  34. D.-H. Kwon, P.L. Werner, D.H. Werner, Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Opt. Express 16(16), 11802–11807 (2008)

    Article  ADS  Google Scholar 

  35. P. Yeh, Optical waves in layered media, vol 95. (Wiley, New York, 1988)

Download references

Acknowledgments

The authors acknowledge P. U. Jepsen and A. Strikwerda for useful discussions. A. A. acknowledges financial support from the Danish Council for Technical and Production Sciences through the GraTer (11-116991) Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry L. Markovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markovich, D.L., Andryieuski, A., Zalkovskij, M. et al. Metamaterial polarization converter analysis: limits of performance. Appl. Phys. B 112, 143–152 (2013). https://doi.org/10.1007/s00340-013-5383-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5383-8

Keywords

Navigation