Skip to main content
Log in

Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Single-crystalline KY1−x−y−z GdxLuyYbz(WO4)2 layers are grown onto undoped KY(WO4)2 substrates by liquid-phase epitaxy. The purpose of co-doping the KY(WO4)2 layer with suitable fractions of Gd3+ and Lu3+ is to achieve lattice-matched layers that allow us to engineer a high refractive-index contrast between waveguiding layer and substrate for obtaining tight optical mode confinement and simultaneously accommodate a large range of Yb3+ doping concentrations by replacing Lu3+ ions of similar ionic radius for a variety of optical amplifier or laser applications. Crack-free layers, up to a maximum lattice mismatch of ~0.08 %, are grown with systematic variations of Y3+, Gd3+, Lu3+, and Yb3+ concentrations, their refractive indices are measured at several wavelengths, and Sellmeier dispersion curves are derived. The influence of co-doping on the spectroscopy of Yb3+ is investigated. As evidenced by the experimental results, the lattice constants, refractive indices, and transition cross-sections of Yb3+ in these co-doped layers can be approximated with good accuracy by weighted averages of data from the pure compounds. The obtained information is exploited to fabricate a twofold refractive-index-engineered sample consisting of a highly Yb3+-doped tapered channel waveguide embedded in a passive planar waveguide, and a cladding-side-pumped channel waveguide laser is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Pollnau, Y.E. Romanyuk, F. Gardillou, C.N. Borca, U. Griebner, S. Rivier, V. Petrov, Double tungstate lasers: from bulk toward on-chip integrated waveguide devices. IEEE J. Sel. Top. Quantum Electron. 13, 661–671 (2007)

    Article  Google Scholar 

  2. A.A. Kaminskii, A.F. Konstantinova, V.P. Orekhova, A.V. Butashin, R.F. Klevtsova, A.A. Pavlyuk, Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals. Crystallogr. Rep. 46, 665–672 (2001)

    Article  ADS  Google Scholar 

  3. A.A. Lagatsky, N.V. Kuleshov, V.P. Mikhailov, Diode-pumped CW lasing of Yb:KYW and Yb:KGW. Opt. Commun. 165, 71–75 (1999)

    Article  ADS  Google Scholar 

  4. N.V. Kuleshov, A.A. Lagatsky, V.G. Shcherbitsky, V.P. Mikhailov, E. Heumann, T. Jensen, A. Diening, G. Huber, CW laser performance of Yb and Er, Yb doped tungstates. Appl. Phys. B 64, 409–413 (1997)

    Article  ADS  Google Scholar 

  5. N.V. Kuleshov, A.A. Lagatsky, A.V. Podlipensky, V.P. Mikhailov, G. Huber, Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2. Opt. Lett. 22, 1317–1319 (1997)

    Article  ADS  Google Scholar 

  6. M.C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, X. Solans, F. Díaz, M. Aguiló, Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix. J. Appl. Crystallogr. 35, 108–112 (2002)

    Article  Google Scholar 

  7. I.M. Krygin, A.D. Prokhorov, V.P. D’yakonov, M.T. Borowiec, H. Szymczak, Spin-spin interaction of Dy3+ ions in KY(WO4)2. Phys. Solid State 44, 1587–1596 (2002)

    Article  ADS  Google Scholar 

  8. K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen, Highly Yb-doped oxides for thin-disc lasers. J. Cryst. Growth 275, 135–140 (2005)

    Article  ADS  Google Scholar 

  9. M.C. Pujol, M.A. Bursukova, F. Güell, X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, P. Klopp, U. Griebner, V. Petrov, Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO4)2. Phys. Rev. B 65, 165121 (2002)

    Article  ADS  Google Scholar 

  10. P. Klopp, U. Griebner, V. Petrov, X. Mateos, M.A. Bursukova, M.C. Pujol, R. Solé, J. Gavaldà, M. Aguiló, F. Güell, J. Massons, T. Kirilov, F. Díaz, Laser operation of the new stoichiometric crystal KYb(WO4)2. Appl. Phys. B 74, 185–189 (2002)

    Article  ADS  Google Scholar 

  11. S.V. Borisov, R.F. Klevtsova, Crystal structure of KY(WO4)2. Sov. Phys. Crystallogr. 13, 420–421 (1968). (Transl.: Kristallografiya 13, 517-519 (1968))

    Google Scholar 

  12. P.V. Klevtsov, L.P. Kozeeva, Synthesis X-ray and thermographic study of potassium rare-earth tungstates, KLn(WO4)2, Ln = rare-earth elements. Sov. Phys. Doklady 14, 185–187 (1969). (Transl.: Doklady Akademii Nauk SSSR 185, 571-574 (1969))

    ADS  Google Scholar 

  13. M.C. Pujol, M. Aguiló, F. Díaz, C. Zaldo, Growth and characterisation of monoclinic KGd1-xREx(WO4)2 single crystals. Opt. Mater. 13, 33–40 (1999)

    Article  ADS  Google Scholar 

  14. G. Métrat, M. Boudeulle, N. Muhlstein, A. Brenier, G. Boulon, Nucleation, morphology and spectroscopic properties of Yb3+-doped KY(WO4)2 crystals grown by the top nucleated floating crystal method. J. Cryst. Growth 197, 883–888 (1999)

    Article  Google Scholar 

  15. Y.E. Romanyuk, Liquid-phase epitaxy of doped KY(WO4)2 layers for waveguide lasers. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (2006)

  16. P.V. Klevtsov, L.P. Kozeeva, R.F. Klevtsova, Crystallographic study of potassium-yttrium tungstate and molybdate. Izv. Akad. Nauk SSSR Neorgan. Mater. 4, 1147–1151 (1968)

    Google Scholar 

  17. E. Gallucci, C. Goutaudier, G. Boulon, M.T. Cohen-Adad, Growth of KY(WO4)2 single crystal: investigation of the WO3 rich region in the K2O–Y2O3-WO3 ternary system. 2. The KY(WO4)2 crystallization field. Eur. J. Solid State Inorg. Chem. 35, 433–445 (1998)

    Article  Google Scholar 

  18. R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, F. Díaz, Growth of β-KGd1-xNdx(WO4)2 single crystals in K2W2O7 solvents. J. Cryst. Growth 169, 600–603 (1996)

    Article  ADS  Google Scholar 

  19. Y.E. Romanyuk, C.N. Borca, M. Pollnau, S. Rivier, V. Petrov, U. Griebner, Yb-doped KY(WO4)2 planar waveguide laser. Opt. Lett. 31, 53–55 (2006)

    Article  ADS  Google Scholar 

  20. F. Gardillou, Y.E. Romanyuk, C.N. Borca, R.P. Salathé, M. Pollnau, Lu, Gd co-doped KY(WO4)2:Yb epitaxial layers: towards integrated optics based on KY(WO4)2. Opt. Lett. 32, 488–490 (2007)

    Article  ADS  Google Scholar 

  21. D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, M. Pollnau, Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser. Opt. Express 18, 8853–8858 (2010)

    Article  ADS  Google Scholar 

  22. D. Geskus, S. Aravazhi, E.H. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Günther, K. Wörhoff, M. Pollnau, Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers. Laser Phys. Lett. 6, 800–805 (2009)

    Article  ADS  Google Scholar 

  23. D. Geskus, S. Aravazhi, K. Wörhoff, M. Pollnau, High-power, broadly tunable, and low-quantum-defect KGd1-xLux(WO4)2:Yb3+ channel waveguide lasers. Opt. Express 18, 26107–26112 (2010)

    Article  ADS  Google Scholar 

  24. D. Geskus, S. Aravazhi, S.M. García-Blanco, M. Pollnau, Giant optical gain in a rare-earth-ion-doped microstructure. Adv. Mater. 24, OP19–OP22 (2012)

    Article  Google Scholar 

  25. D. Geskus et al. Highly efficient channel waveguide laser at the 981-nm zero-line of Yb3+. (are preparing a manuscript)

  26. M.C. Pujol, R. Solé, J. Massons, J. Gavaldà, X. Solans, C. Zaldo, F. Díaz, M. Aguiló, Structural study of monoclinic KGd(WO4)2 and effects of lanthanide substitution. J. Appl. Crystallogr. 34, 1–6 (2001)

    Article  Google Scholar 

  27. M.C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, F. Díaz, M. Aguiló, Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals. Mater. Sci. Forum 378, 710–717 (2001)

    Article  Google Scholar 

  28. M.C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Surinach, J. Massons, F. Díaz, M. Aguiló, Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2. J. Appl. Crystallogr. 39, 230–236 (2006)

    Article  Google Scholar 

  29. L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17–26 (1921)

    Article  ADS  Google Scholar 

  30. M.C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikonov, X. Solans, M. Aguiló, F. Díaz, Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals. Appl. Phys. B 68, 187–197 (1999)

    Article  ADS  Google Scholar 

  31. R. Jansson, H. Arwin, Selection of the physically correct solution in the n-media Bruggeman effective medium approximation. Opt. Commun. 106, 133–138 (1994)

    Article  ADS  Google Scholar 

  32. R. Ulrich, R. Torge, Measurement of thin-film parameters with a prism coupler. Appl. Opt. 12, 2901–2908 (1973)

    Article  ADS  Google Scholar 

  33. http://www.eksmaoptics.com/

  34. S. Biswal, S.P. O’Connor, S.R. Bowman, Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate. Appl. Opt. 44, 3093–3097 (2005)

    Article  ADS  Google Scholar 

  35. H. Liu, J. Nees, G. Mourou, Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser. Opt. Lett. 26, 1723–1725 (2001)

    Article  ADS  Google Scholar 

  36. B.F. Aull, H.P. Jenssen, Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J. Quantum Electron. 18, 925–930 (1982)

    Article  ADS  Google Scholar 

  37. D.E. McCumber, Einstein relations connecting broadband emission and absorption spectra. Phys. Rev. 136, A954–A957 (1964)

    Article  ADS  Google Scholar 

  38. A. Major, I. Nikolakakos, J.S. Aitchison, A.I. Ferguson, N. Langford, P.W.E. Smith, Characterization of the nonlinear refractive index of the laser crystal Yb:KGd(WO4)2. Appl. Phys. B 77, 433–436 (2003)

    Article  ADS  Google Scholar 

  39. X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, V. Petrov, U. Griebner, Crystal growth, spectroscopic studies and laser operation of Yb3+-doped potassium lutetium tungstate. Opt. Mater. 28, 519–523 (2006)

    Article  ADS  Google Scholar 

  40. F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3. Opt. Mater. 24, 103–109 (2003)

    Article  ADS  Google Scholar 

  41. L.J. McKnight, S. Calvez, Gain-guided KYb(WO4)2 laser, in Digest of Europhoton Conference 2010, Europhysics Conference Abstract Vol. 34C (European Physical Society, Mulhouse, 2010), p. 24, paper WeP19

  42. U. Griebner, R. Grunwald, H. Schönnagel, Thermally bonded Yb:YAG planar waveguide laser. Opt. Commun. 164, 185–190 (1999)

    Article  ADS  Google Scholar 

  43. R.P. Soon, O. Beom-Hoan, Novel design concept of waveguide mode adapter for low-loss mode conversion. IEEE Photon. Technol. Lett. 13, 675–677 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank A. Hollink for technical assistance with the growth setup, Yaroslav E. Romanyuk for helpful discussions, and Martin Krejci from Oclaro Inc. for providing the diode bar. This project was financially supported by The Netherlands Organization for Scientific Research (NWO) through the VICI Grant no. 07207 “Photonic integrated structures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Pollnau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aravazhi, S., Geskus, D., van Dalfsen, K. et al. Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser. Appl. Phys. B 111, 433–446 (2013). https://doi.org/10.1007/s00340-013-5353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5353-1

Keywords

Navigation