Skip to main content
Log in

Long-wave infrared emission properties of strain-balanced InAs/InxGa1−xAsySb1−y type-II superlattice on different substrates

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High-performance type-II superlattices of III–V semiconductor materials play an important role in the development and application of infrared optoelectronic devices. Improving the quality of epitaxial materials and clarifying the luminescent mechanism are of great significance for practical applications. In this work, strain-balanced and high-quality InAs/InxGa1−xAsySb1−y superlattices without lattice mismatch were achieved on InAs and GaSb substrates successfully. Superlattices grown on InAs substrate could exhibit higher crystal quality and surface flatness based on high-resolution X-ray diffraction (HRXRD) and atomic force microscopy (AFM) measurements’ results. Moreover, the strain distribution phenomenon from geometric phase analysis indicates that fluctuations of alloy compositions in superlattices on GaSb substrate are more obvious. In addition, the optical properties of superlattices grown on different substrates are discussed systematically. Because of the difference in fluctuations of element composition and interface roughness of superlattices on different substrates, the superlattices grown on InAs substrate would have higher integral intensity and narrower full-width at half maximum of long-wave infrared emission. Finally, the thermal quenching of emission intensity indicates that the superlattices grown on the InAs substrate have better recombination ability, which is beneficial for increasing the operating temperature of infrared optoelectronic devices based on this type of superlattices.

Graphical Abstract

摘要

基于III–V型半导体材料的高性能ii型超晶格在红外光电子器件的发展和应用中发挥着重要作用. 提高外延材料的质量和阐明其发光机理对实际应用具有重要意义. 本文在InAs和GaSb衬底上实现了应变平衡且无晶格失配的高质量InAs/InxGa1−xAsySb1−y超晶格. 高分辨率x射线衍射和原子力显微镜测量结果表明, 在InAs衬底上生长的超晶格表现出更优异的晶体质量和较小的表面粗糙度. 几何相位分析的应变分布结果表明, GaSb衬底超晶格中合金成分的波动更为明显. 此外, 还系统地讨论了基于不同衬底超晶格的光学特性. 由于不同衬底上的元素组分波动和界面粗糙度的差异, 生长在InAs衬底上的超晶格在长波红外发射的光谱对应的半峰宽较小且具有更高的积分强度. 最后, 发射光谱积分强度的热猝灭表明, 生长在InAs衬底上的超晶格具有更好的辐射复合能力, 这有利于提高基于这种衬底超晶格的红外光电探测器件的工作温度.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang Y, Wei D, Sohr P, Zide JMO, Law S. Extending the tunable plasma wavelength in III-V semiconductors from the mid-infrared to the shortwave infrared by embedding self assembled ErAs nanostructures in GaAs. Adv Opt Mater. 2020;8(7):1900937. https://doi.org/10.1002/adom.201900937.

    Article  CAS  Google Scholar 

  2. Muhowski AJ, Muellerleile AM, Olesberg JT. Internal quantum efficiency in 6.1 Å superlattices of 77% for mid-wave infrared emitters. Appl Phys Lett. 2020;117(6):061101. https://doi.org/10.1063/5.0013854.

    Article  CAS  Google Scholar 

  3. Billat A, Grassani D, Pfeiffer MHP, Kharitonov S, Kippenberg TJ, Bres CS. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat Commun. 2017;8(1):1016. https://doi.org/10.1038/s41467-017-01110-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rogalski A, Martyniuk P, Kopytko M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog Quant Electrton. 2019;68:100228. https://doi.org/10.1016/j.pquantelec.2019.100228.

    Article  Google Scholar 

  5. Rio Calvo M, Rodriguez JB, Cornet C, Cerutti L, Ramonda M, Trampert A, Patriarche G, Tournié É. Crystal phase control during epitaxial hybridization of III–V semiconductors with silicon. Adv Electron Mater. 2022;8(1):2100777. https://doi.org/10.1002/aelm.202100777.

    Article  CAS  Google Scholar 

  6. Li H, You S, Yu Y, Ma L, Zhang L, Yang Q. Ga/GaSb nano-structures: solution-phase growth for high-performance infrared photodetection. Nano Res. 2023;16(2):3304. https://doi.org/10.1007/s12274-022-4931-0.

    Article  CAS  Google Scholar 

  7. Klipstein PC, Benny Y, Gliksman S, Glozman A, Hojman E, Klin O, Langof L, Lukomsky I, Marderfeld I, Nitzani M, Snapi N, Weiss E. Minority carrier lifetime and diffusion length in type II superlattice barrier devices. Infrared Phys Technol. 2019;96:155. https://doi.org/10.1016/j.infrared.2018.11.022.

    Article  CAS  Google Scholar 

  8. Zuo D, Qiao P, Wasserman D, Lien CS. Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control. Appl Phys Lett. 2013;102(14):2545. https://doi.org/10.1063/1.4801764.

    Article  CAS  Google Scholar 

  9. Höglund L, Ting DZ, Khoshakhlagh A, Soibel A, Hill CJ, Fisher A, Keo S, Gunapala SD. Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices. Appl Phys Lett. 2013;103(22):221908. https://doi.org/10.1063/1.4835055.

    Article  CAS  Google Scholar 

  10. Jinghe Liu DD, Kevin K, Zhao JZ, Kipshidze G, Belenky G, Svensson SP. Short-period InAsSb-based strained layer superlattices for high quantum efficiency long-wave infrared detectors. Appl Phys Lett. 2022;120(14):141101. https://doi.org/10.1063/5.0083862.

    Article  CAS  Google Scholar 

  11. Petluru P, Grant PC, Muhowski AJ, Obermeier IM, Milosavljevic MS, Johnson SR, Wasserman D, Steenbergen EH, Webster PT. Minority carrier lifetime and photoluminescence of mid-wave infrared InAsSbBi. Appl Phys Lett. 2020;117(6):061103. https://doi.org/10.1063/5.0007275.

    Article  CAS  Google Scholar 

  12. Wang YJ, Yu XW, Zhang P, Wang ZJ, Yan L, He L, Wang ZK, Shi ZQ. Expanded mesocarbon microbead cathode for sodium-based dual-ion battery with superior specific capacity and long-term cycling stability. Rare Met. 2023;42(5):1545. https://doi.org/10.1007/s12598-022-02198-5.

  13. Zhang SX, Wang JC, Zhao YM, Han YL, Ming AJ, Wei F, Mao CH. High-dielectric loss black silicon decorated with multi-nanostructure for wide-band mid-infrared absorption. Rare Met. 2023;42(7):2447. https://doi.org/10.1007/s12598-023-02292-2.

  14. Olson BV, Shaner EA, Kim JK, Klem JF, Hawkins SD, Flatté ME, Boggess TF. Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys. Appl Phys Lett. 2013;103(5):052106. https://doi.org/10.1063/1.4817400.

    Article  CAS  Google Scholar 

  15. Li H, You S, Yu Y, Ma L, Zhang L, Yang Q. Ga/GaSb nanostructures: solution-phase growth for high-performance infrared photodetection. Nano Res. 2023;16(2):3304. https://doi.org/10.1007/s12274-022-4931-0.

    Article  CAS  Google Scholar 

  16. Du P, Fang X, Gong Q, Li J, Kou X, Zhao HB, Wang XH. Fabrication and characterization of an InAs (Sb)/InxGa1−xAsySb1−y Type-II superlattice. Phys Status Solidi-R. 2019;13(12):1900474. https://doi.org/10.1002/pssr.201900474.

  17. Du P, Fang X, Zhao HB, Fang D, Wang DK, Gong Q, Kou X, Liu X, Wang XH. Mid-and long-infrared emission properties of InxGa1−xAsySb1−y quaternary alloy with Type-II InAs/GaSb superlattice distribution. J Alloy Compd. 2020;847:156390. https://doi.org/10.1016/j.jallcom.2020.156390.

  18. Liu GB, Chen ZW, Gu HW, Meng QK, Qi JQ. Microstructure and mechanical properties of Zn-0.75Cu-0.15Ti alloy with different deformation treatments. Copper Engineering. 2023(1):28. https://doi.org/10.3969/j.issn.1009-3842.2023.01.004.

  19. Chen HJ, Luo X, Wang XD, Mao HM, Zeng XH, Xu K. Structural and luminescent properties of GaN: Eu, Dy films. Chin J Rare Met. 2023;47(03):381. https://doi.org/10.13373/j.cnki.cjrm.XY22060011.

    Article  Google Scholar 

  20. Xiong JZ, Yang ZC, Guo XL, Wang XY, Geng C, Sun ZF, Xiao AY, Zhuang QC, Chen YX, Ju ZC. Review on recent advances of inorganic electrode materials for potassium-ion batteries. Tungsten. 2024;6(1):174. https://doi.org/10.1007/s42864-022-00177-y.

  21. Liu D, Yin YX, Liu FJ, Miao CC, Zhuang XM, Pang ZY, Xu MS, Chen M, Yang ZX. Thickness-dependent highly sensitive photodetection behavior of lead-free all-inorganic CsSnBr3 nanoplates. Rare Met. 2022;41(5):1753. https://doi.org/10.1007/s12598-021-01909-8.

    Article  CAS  Google Scholar 

  22. Hÿtch M, Snoeck E, Kilaas RJ. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy. 1998;74(3):131. https://doi.org/10.1016/S0304-3991(98)00035-7.

    Article  Google Scholar 

  23. Mahalingam K, Haugan HJ, Brown GJ, Aronow AJ. Strain analysis of compositionally tailored interfaces in InAs/GaSb superlattices. Appl Phys Lett. 2013;103(21):211605. https://doi.org/10.1063/1.4833536.

    Article  CAS  Google Scholar 

  24. Mahalingam K, Steenbergen EH, Brown GJ, Zhang YH. Quantitative analysis of strain distribution in InAs/InAs1−xSbx superlattices. Appl Phys Lett. 2013;103(6):061908. https://doi.org/10.1063/1.4817969.

    Article  CAS  Google Scholar 

  25. Niu YT, Qing FZ, Li XS, Peng B. Inhomogeneous strain and doping of transferred CVD-grown graphene. Rare Met. 2022;41(5):1727. https://doi.org/10.1007/s12598-021-01912-z.

    Article  CAS  Google Scholar 

  26. Wu Y, Zhang Y, Zhang Y, Zhao Y, Zhang Y, Xu Y, Liang C, Niu Z, Shi Y, Che R. Dual strategy of modulating growth temperature and inserting ultrathin barrier to enhance the wave function overlap in Type-II superlattices. Nano Res. 2022;15(6):5626. https://doi.org/10.1007/s12274-022-4151-7.

    Article  CAS  Google Scholar 

  27. Cai C, Zhao Y, Xie S, Zhao X, Zhang Y, Xu Y, Liang C, Niu Z, Shi Y, Li Y, Che R. Heterointerface-driven band alignment engineering and its impact on macro-performance in semiconductor multilayer nanostructures. Small. 2019;15(27):1900837. https://doi.org/10.1002/smll.201900837.

    Article  CAS  Google Scholar 

  28. Xia P, Sun B, Biondi M, Xu J, Atan O, Imran M, Hassan Y, Liu Y, Pina JM, Najarian AM, Grater L, Bertens K, Sagar LK, Anwar H, Choi MJ, Zhang Y, Hasham M, García de Arquer FP, Hoogland S, Wilson MWB, Sargent EH. Sequential co-passivation in InAs colloidal quantum dot solids enables efficient near-infrared photodetectors. Adv Mater. 2023;35(28):2301842. https://doi.org/10.1002/adma.202301842.

    Article  CAS  Google Scholar 

  29. Wang LQ, Wang WY, Huang JH, Tan RQ, Song WJ, Chen JM. Growth and properties of hydrogenated microcrystalline silicon thin films prepared by magnetron sputtering with different substrate temperatures. Rare Met. 2022;41(3):1037. https://doi.org/10.1007/s12598-015-0510-9.

    Article  CAS  Google Scholar 

  30. Seetoh IP, Soh CB, Fitzgerald EA, Chua SJ. Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state photoluminescence. Appl Phys Lett. 2013;102(10):101112. https://doi.org/10.1063/1.4795793.

    Article  CAS  Google Scholar 

  31. Steenbergen EH, Massengale JA, Ariyawansa G, Zhang YH. Evidence of carrier localization in photoluminescence spectroscopy studies of mid-wavelength infrared InAs/InAs1−xSbx type-II superlattices. J Lumi. 2016;178:451. https://doi.org/10.1016/j.jlumin.2016.06.020.

    Article  CAS  Google Scholar 

  32. Lee S, Jo HJ, Mathews S, Simon JA, Ronningen TJ, Kodati SH, Fink DR, Kim JS, Winslow M, Grein CH, Jones AH, Campbell JC, Krishna S. Investigation of carrier localization in InAs/AlSb type-II superlattice material system. Appl Phys Lett. 2019;115(21):211601. https://doi.org/10.1063/1.5127198.

    Article  CAS  Google Scholar 

  33. Chowdhury FA, Trudeau ML, Wang R, Guo H, Mi Z. Dilute-antimonide GaSbN/GaN dots-in-wire heterostructures grown by molecular beam epitaxy: structural and optical properties. Appl Phys Lett. 2021;118(1):012101. https://doi.org/10.1063/5.0029761.

    Article  CAS  Google Scholar 

  34. Li R, Wei Z, Zhao F, Gao X, Fang X, Li Y, Wang X, Tang J, Fang D, Wang H, Chen R, Wang X. Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires. Nanophotonics. 2017;6(5):1093. https://doi.org/10.1515/nanoph-2016-0157.

    Article  CAS  Google Scholar 

  35. Lin ZY, Liu S, Steenbergen EH, Zhang YH. Influence of carrier localization on minority carrier lifetime in InAs/InAsSb type-II superlattices. Appl Phys Lett. 2015;107(20): 201107. https://doi.org/10.1063/1.4936109.

    Article  CAS  Google Scholar 

  36. Bardeen J, Shockley W. Deformation potentials and mobilities in mon-polar crystals. Phys Rev. 1950;80(1):72. https://doi.org/10.1103/PhysRev.80.72.

    Article  CAS  Google Scholar 

  37. Fan HY. Temperature dependence of the energy gap in semi-conductors. Phys Rev. 1951;82(6):900. https://doi.org/10.1103/PhysRev.82.900.

    Article  CAS  Google Scholar 

  38. Zhang BW, Fang D, Fang X, Zhao HB, Wang DK, Li JH, Wang XH, Wang DB. InAs/InAsSb type-II superlattice with near room-temperature long-wave emission through interface engineering. Rare Met. 2022;41(3):982. https://doi.org/10.1007/s12598-021-01833-x.

    Article  CAS  Google Scholar 

  39. Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica. 1967;34(1):149. https://doi.org/10.1016/0031-8914(67)90062-6.

    Article  CAS  Google Scholar 

  40. Guha S, Cai Q, Chandrasekhar M, Chandrasekhar HR, Kim H, Alvarenga AD, Vogelgesang R, Ramdas AK, Melloch MR. Photoluminescence of short-Period GaAs/AlAs superlattices: a hydrostatic pressure and temperature study. Phys Rev B. 1998;58(11):7222. https://doi.org/10.1103/PhysRevB.58.7222.

    Article  CAS  Google Scholar 

  41. Brunner D, Angerer H, Bustarret E, Freudenberg F, Höpler R, Dimitrov R, Ambacher O, Stutzmann M. Optical constants of epitaxial AlGaN films and their temperature dependence. J Appl Phys. 1997;82(10):5090. https://doi.org/10.1063/1.366309.

    Article  CAS  Google Scholar 

  42. Chen X, Zhou Y, Zhu L, Qi Z, Xu Q, Xu Z, Guo S, Chen J, He L, Shao J. Evolution of interfacial properties with annealing in InAs/GaSb superlattice probed by infrared photoluminescence. Jpn J Appl Phys. 2014;53(8):082201. https://doi.org/10.7567/JJAP.53.082201.

    Article  CAS  Google Scholar 

  43. Pickin W, David JPR. Carrier decay in GaAs quantum wells. Appl Phys Lett. 1990;56(3):268. https://doi.org/10.1063/1.102805.

    Article  CAS  Google Scholar 

  44. Chen X, Zhuang Q, Alradhi H, Jin ZM, Zhu L, Chen X, Shao J. Midinfrared photoluminescence up to 290 K reveals radiative mechanisms and substrate doping-type effects of InAs nanowires. Nano Lett. 2017;17(3):1545. https://doi.org/10.1021/acs.nanolett.6b04629.

    Article  CAS  PubMed  Google Scholar 

  45. Devine RLS. Photoluminescence characterisation of InGaAs/GaAs quantum well structures. Semicond Sci Technol. 1988;3(12):1171. https://doi.org/10.1088/0268-1242/3/12/004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 62074018, 62174015 and 62275032), the Developing Project of Science and Technology of Jilin Province (No. 20210509061RQ), the Natural Science Foundation of Jilin Province (No. 20210101473JC). National Key R&D Program of China (No. 2021YFB3201901). The Natural Science Foundation of Chongqing China (No. cstc2021jcyjmsxmX1060). This work was also supported by R&D project of Collighter Co., Ltd and we are grateful to Prof. Peng Du for the help with the novel MBE system and FMA growth method.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan Fang, Hong-Bin Zhao or Jin-Hua Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 916 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Fang, X., Zhao, HB. et al. Long-wave infrared emission properties of strain-balanced InAs/InxGa1−xAsySb1−y type-II superlattice on different substrates. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02655-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02655-3

Keywords

Navigation