Skip to main content
Log in

Optimized online filter stack spectrometer for ultrashort X-ray pulses

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Currently, with the advent of high-repetition-rate laser-plasma experiments, the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for characterizing electron dynamics and applications. In this study, scintillators and silicon PIN (P-type–intrinsic-N-type semiconductor) diodes were used to construct a wideband online filter stack spectrometer. The X-ray sensor and filter arrangement was optimized using a genetic algorithm to minimize the condition number of the response matrix. Consequently, the unfolding error was significantly reduced based on numerical experiments. The detector responses were quantitatively calibrated by irradiating the scintillator and PIN diode with various nuclides and comparing the measured \(\gamma\)-ray peaks. A prototype 15-channel spectrometer was developed by integrating an X-ray detector with front- and back-end electronics. The prototype spectrometer could record X-ray pulse signals at a repetition rate of 1 kHz. Furthermore, an optimized spectrometer was employed to record the real-time spectra of laser-driven bremsstrahlung sources. This optimized spectrometer offers a compact solution for spectrum diagnostics of ultrashort X-ray pulses, exhibiting improved accuracy in terms of spectrum measurements and repetition rates, and could be widely used in next-generation high-repetition-rate high-power laser facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availibility

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.j00186.00405 and https://www.doi.org/10.57760/sciencedb.j00186.00405.

References

  1. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009). https://doi.org/10.1103/RevModPhys.81.1229

    Article  ADS  Google Scholar 

  2. E. Esarey, B.A. Shadwick, P. Catravas et al., Synchrotron radiation from electron beams in plasma-focusing channels. Phys. Rev. E 65, 056505 (2002). https://doi.org/10.1103/PhysRevE.65.056505

    Article  ADS  Google Scholar 

  3. K. Ta Phuoc, S. Corde, C. Thaury et al., All-optical Compton gamma-ray source. Nat. Photonics 6, 308 (2012). https://doi.org/10.1038/nphoton.2012.82

    Article  ADS  Google Scholar 

  4. G. Sarri, D. Corvan, W. Schumaker et al., Ultrahigh brilliance multi-MeV gamma-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett. 113, 224801 (2014). https://doi.org/10.1103/PhysRevLett.113.224801

    Article  ADS  Google Scholar 

  5. W. Yan, C. Fruhling, G. Golovin et al., High-order multiphoton Thomson scattering. Nat. Photonics 11, 514 (2017). https://doi.org/10.1038/nphoton.2017.100

    Article  Google Scholar 

  6. S. Cipiccia, S.M. Wiggins, R.P. Shanks et al., A tuneable ultra-compact high-power, ultra-short pulsed, bright gamma-ray source based on bremsstrahlung radiation from laser-plasma accelerated electrons. J. Appl. Phys. 111, 063302 (2012). https://doi.org/10.1063/1.3693537

    Article  ADS  Google Scholar 

  7. S. Corde, K. Ta Phuoc, G. Lambert et al., Femtosecond X rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1 (2013). https://doi.org/10.1103/RevModPhys.85.1

    Article  ADS  Google Scholar 

  8. F. Albert, A.G.R. Thomas, Applications of laser wakefield accelerator-based light sources. Plasma Phys. Controll. Fusion 58, 103001 (2016). https://doi.org/10.1088/0741-3335/58/10/103001

    Article  ADS  Google Scholar 

  9. B. Guo, X. Zhang, J. Zhang et al., High-resolution phase-contrast imaging of biological specimens using a stable betatron X-ray source in the multiple-exposure mode. Sci. Rep. 9, 7796 (2019). https://doi.org/10.1038/s41598-019-42834-2

    Article  ADS  Google Scholar 

  10. C.P. Jones, C.M. Brenner, C.A. Stitt et al., Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages. J. Hazard. Mater. 318, 694 (2016). https://doi.org/10.1016/j.jhazmat.2016.07.057

    Article  Google Scholar 

  11. Y. Yang, Y.-C. Wu, L. Li et al., Design and characterization of high energy micro-CT with a laser-based X-ray source. Results Phys. 14, 102382 (2019). https://doi.org/10.1016/j.rinp.2019.102382

    Article  Google Scholar 

  12. R. Tommasini, C. Bailey, D.K. Bradley et al., Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility. Phys. Plasmas 24, 053104 (2017). https://doi.org/10.1063/1.4983137

    Article  ADS  Google Scholar 

  13. C. Tian, M. Yu, L. Shan et al., Radiography of direct drive double shell targets with hard x-rays generated by a short pulse laser. Nucl. Fusion 59, 046012 (2019). https://doi.org/10.1088/1741-4326/aafe30

    Article  ADS  Google Scholar 

  14. M. Downer, R. Zgadzaj, A. Debus et al., Diagnostics for plasma-based electron accelerators. Rev. Mod. Phys. 90, 035002 (2018). https://doi.org/10.1103/RevModPhys.90.035002

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Kneip, S.R. Nagel, C. Bellei et al., Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 100, 105006 (2008). https://doi.org/10.1103/PhysRevLett.100.105006

    Article  ADS  Google Scholar 

  16. S. Kneip, C. McGuffey, J.L. Martins et al., Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 6, 980 (2010). https://doi.org/10.1038/nphys1789

    Article  Google Scholar 

  17. Y.H. Yan, L. Wei, X.L. Wen et al., Calibration and Monte Carlo simulation of a single-photon counting charge-coupled device for single-shot X-ray spectrum measurements. Chin. Opt. Lett. 11, 4 (2013). https://doi.org/10.3788/col201311.110401

    Article  Google Scholar 

  18. C. Stoeckl, W. Theobald, T.C. Sangster et al., Operation of a single-photon-counting X-ray charge-coupled device camera spectrometer in a petawatt environment. Rev. Sci. Instrum. 75, 3705 (2004). https://doi.org/10.1063/1.1788867

    Article  ADS  Google Scholar 

  19. M.-H. Yu, G.-Y. Hu, N. An et al., Hard X-ray transmission curved crystal spectrometers (10–100 keV) for laser fusion experiments at the ShenGuang-III laser facility. High Power Laser Sci. Eng. 4, e2 (2016). https://doi.org/10.1017/hpl.2015.36

    Article  Google Scholar 

  20. Z. Chi, L. Yan, Z. Zhang et al., Diffraction based method to reconstruct the spectrum of the Thomson scattering X-ray source. Rev. Sci. Instrum. 88, 045110 (2017). https://doi.org/10.1063/1.4981131

    Article  ADS  Google Scholar 

  21. J. Wen, M. Yu, Y. Wu et al., Diagnostics for ultrashort X-ray pulses using silicon trackers. Nucl. Instrum. Methods Phys. Res. Sect. A 1014, 165754 (2021). https://doi.org/10.1016/j.nima.2021.165754

    Article  Google Scholar 

  22. S. Singh, R. Versaci, A.L. Garcia et al., Compact high energy x-ray spectrometer based on forward Compton scattering for high intensity laser plasma experiments. Rev. Sci. Instrum. 89, 7 (2018). https://doi.org/10.1063/1.5040979

    Article  Google Scholar 

  23. S. Cipiccia, S.M. Wiggins, D. Maneuski et al., Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays. Rev. Sci. Instrum. 84, 113302 (2013). https://doi.org/10.1063/1.4825374

    Article  ADS  Google Scholar 

  24. A.E. Gehring, M.A. Espy, T.J. Haines et al., Determining X-ray spectra of radiographic sources with a Compton spectrometer, in Radiation Detectors Systems and Applications Xv Proc. SPIE, vol. 9215 (2014), p. 921508. https://doi.org/10.1117/12.2065588

  25. D.J. Corvan, G. Sarri, M. Zepf, Design of a compact spectrometer for high-flux MeV gamma-ray beams. Rev. Sci. Instrum. 85, 065119 (2014). https://doi.org/10.1063/1.4884643

    Article  ADS  Google Scholar 

  26. D. Haden, G. Golovin, W. Yan et al., High energy X-ray Compton spectroscopy via iterative reconstruction. Nucl. Instrum. Methods Phys. Res. Sect. A 951, 163032 (2020). https://doi.org/10.1016/j.nima.2019.163032

    Article  Google Scholar 

  27. C. Courtois, R. Edwards, A.C. La Fontaine et al., Characterisation of a MeV Bremsstrahlung X-ray source produced from a high intensity laser for high areal density object radiography. Phys. Plasmas 20, 9 (2013). https://doi.org/10.1063/1.4818505

    Article  Google Scholar 

  28. J.H. Jeon, K. Nakajima, H.T. Kim et al., A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation. Rev. Sci. Instrum. 86, 9 (2015). https://doi.org/10.1063/1.4939014

    Article  Google Scholar 

  29. A. Hannasch, A. Laso Garcia, M. LaBerge et al., Compact spectroscopy of keV to MeV X-rays from a laser wakefield accelerator. Sci. Rep. 11, 14368 (2021). https://doi.org/10.1038/s41598-021-93689-5

    Article  ADS  Google Scholar 

  30. A.L. Meadowcroft, C.D. Bentley, E.N. Stott, Evaluation of the sensitivity and fading characteristics of an image plate system for X-ray diagnostics. Rev. Sci. Instrum. 79, 113102 (2008). https://doi.org/10.1063/1.3013123

    Article  ADS  Google Scholar 

  31. T. Bonnet, M. Comet, D. Denis-Petit et al., Response functions of imaging plates to photons, electrons and 4He particles. Rev. Sci. Instrum. 84, 103510 (2013). https://doi.org/10.1063/1.4826084

    Article  ADS  Google Scholar 

  32. P.W. Hatfield, J.A. Gaffney, G.J. Anderson et al., The data-driven future of high-energy-density physics. Nature 593, 351 (2021). https://doi.org/10.1038/s41586-021-03382-w

    Article  ADS  Google Scholar 

  33. T. Ma, D. Mariscal, R. Anirudh et al., Accelerating the rate of discovery: toward high-repetition-rate HED science. Plasma Phys. Controll. Fusion 63, 104003 (2021). https://doi.org/10.1088/1361-6587/ac1f67

    Article  ADS  Google Scholar 

  34. Q. Liu, H.T. Wang, H.S. Chen et al., Development of the electron gun filament power supply for small size betatron. Nucl. Tech. 45, 110401 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.110401. (in Chinese)

    Article  Google Scholar 

  35. C. Grupen, B. Shwartz, Particle Detectors

  36. D.R. Rusby, C.D. Armstrong, C.M. Brenner et al., Novel scintillator-based x-ray spectrometer for use on high repetition laser plasma interaction experiments. Rev. Sci. Instrum. 89, 8 (2018). https://doi.org/10.1063/1.5019213

    Article  Google Scholar 

  37. K.T. Behm, J.M. Cole, A.S. Joglekar et al., A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV. Rev. Sci. Instrum. 89, 9 (2018). https://doi.org/10.1063/1.5056248

    Article  Google Scholar 

  38. V. Stránský, V. Istokskaia, R. Versaci et al., Development, optimization, and calibration of an active electromagnetic calorimeter for pulsed radiation spectrometry. J. Instrum. 16, 08060 (2021). https://doi.org/10.1088/1748-0221/16/08/P08060

    Article  Google Scholar 

  39. V. Istokskaia, V. Stránský, L. Giuffrida et al., Experimental tests and signal unfolding of a scintillator calorimeter for laser-plasma characterization. J. Instrum. 16, 02006 (2021). https://doi.org/10.1088/1748-0221/16/02/T02006

    Article  Google Scholar 

  40. J.M. Cole, K.T. Behm, E. Gerstmayr et al., Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X 8, 011020 (2018). https://doi.org/10.1103/PhysRevX.8.011020

    Article  Google Scholar 

  41. K. Poder, M. Tamburini, G. Sarri et al., Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X 8, 031004 (2018). https://doi.org/10.1103/PhysRevX.8.031004

    Article  Google Scholar 

  42. C.I.D. Underwood, C.D. Baird, C.D. Murphy et al., Development of control mechanisms for a laser wakefield accelerator-driven bremsstrahlung x-ray source for advanced radiographic imaging. Plasma Phys. Controll. Fusion 62, 124002 (2020). https://doi.org/10.1088/1361-6587/abbebe

    Article  ADS  Google Scholar 

  43. D. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989)

    Google Scholar 

  44. M. Bitossi, R. Paoletti, D. Tescaro, Ultra-fast Sampling and data acquisition using the DRS4 waveform digitizer. IEEE Trans. Nucl. Sci. 63, 2309 (2016). https://doi.org/10.1109/TNS.2016.2578963

    Article  ADS  Google Scholar 

  45. D.L. Fehl, G.A. Chandler, W.A. Stygar et al., Characterization and error analysis of an N X N unfolding procedure applied to filtered, photoelectric X-ray detector arrays. I. Formulation and testing. Phys. Rev. Spec. Top. Accel. Beams 13, 120402 (2010). https://doi.org/10.1103/PhysRevSTAB.13.120402

    Article  ADS  Google Scholar 

  46. D.L. Fehl, G.A. Chandler, W.A. Stygar et al., Characterization and error analysis of an N X N unfolding procedure applied to filtered, photoelectric X-ray detector arrays. II. Error analysis and generalization. Phys. Rev. Spec. Top.–Accel. Beams 13, 120403 (2010). https://doi.org/10.1103/PhysRevSTAB.13.120403

    Article  ADS  Google Scholar 

  47. M. Reginatto, Overview of spectral unfolding techniques and uncertainty estimation. Radiat. Meas. 45, 1323 (2010). https://doi.org/10.1016/j.radmeas.2010.06.016

    Article  Google Scholar 

  48. G.H. Golub, C.F. van Loan, Matrix Computations, 3rd edn. (Stanford University, Stanford, 1996)

    Google Scholar 

  49. J. Iwanowska, L. Swiderski, T. Szczesniak et al., Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A 712, 34 (2013). https://doi.org/10.1016/j.nima.2013.01.064

    Article  ADS  Google Scholar 

  50. A. Owens, A. Peacock, Compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 531, 18 (2004). https://doi.org/10.1016/j.nima.2004.05.071

    Article  ADS  Google Scholar 

  51. A. Chipperfield, P. Fleming, H. Pohlheim, A genetic algorithm toolbox for MATLAB, in Proceedings of the International Conference on Systems Engineering (1994), p. 200

  52. S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  53. W. Schumaker, G. Sarri, M. Vargas et al., Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams. Phys. Plasmas 21, 056704 (2014). https://doi.org/10.1063/1.4875336

    Article  ADS  Google Scholar 

  54. J.-X. Wen, X.-T. Zheng, J.-D. Yu et al., Compact CubeSat Gamma-ray detector for GRID mission. Nucl. Sci. Tech. 32, 99 (2021). https://doi.org/10.1007/s41365-021-00937-4

    Article  Google Scholar 

  55. J. Cang, T. Xue, M. Zeng et al., Optimal design of waveform digitisers for both energy resolution and pulse shape discrimination. Nucl. Instrum. Methods Phys. Res. Sect. A 888, 96 (2018). https://doi.org/10.1016/j.nima.2018.01.064

    Article  ADS  Google Scholar 

  56. L. Zhang, G. Zhang, Z. Chen et al., X-ray spectrum estimation from transmission measurements using the expectation maximization method, in 2007 IEEE Nuclear Science Symposium Conference Record, vol. 4 (2007), p. 3089. https://doi.org/10.1109/NSSMIC.2007.4436783

  57. L. Meng, D. Ramsden, V. Chirkin et al., The design and performance of a large-volume spherical CsI(Tl) scintillation counter for gamma-ray spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A 485, 468 (2002). https://doi.org/10.1016/S0168-9002(01)02107-6

    Article  ADS  Google Scholar 

  58. S. Yang, X.Q. Zhang, C.M. Deng et al., Design of portable multi-function radiation detection system. Nucl. Tech. 45, 110403 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.110403. (in Chinese)

    Article  Google Scholar 

  59. 0.3 mm Si-PIN datasheet

  60. Y.C. Wu, B. Zhu, G. Li et al., Towards high-energy, high-resolution computed tomography via a laser driven micro-spot gamma-ray source. Sci. Rep. 8, 15888 (2018). https://doi.org/10.1038/s41598-018-33844-7

    Article  ADS  Google Scholar 

  61. X.Y. Wang, J.B. Zhou, J.F. He et al., Impulse response shaping method for nuclear pulses based on derivative operations. Nucl. Tech. 45, 070403 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.070403. (in Chinese)

    Article  Google Scholar 

  62. X.Y. Yang, X. Hong, J.B. Zhou et al., Gaussian pulse shaping algorithm for dual exponential signals based on wavelet transform. Nucl. Tech. 46, 050403 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.050403. (in Chinese)

    Article  Google Scholar 

  63. C. Robert Emigh, Thick target bremsstrahlung theory. Technical report of Los Alamos Scientific Laboratory of the University of California

Download references

Acknowledgements

The authors thank Zhi-Meng Zhang and Bo Zhang for their assistance in the experiments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by J-XW, GM, M-HY, Y-CW, Y-HY, S-YW, H-ZG, L-SW, Y-GZ, YY, FT, X-HZ, JZ and W-BM. The first draft of the manuscript was written by J-XW, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ming Zeng or Zong-Qing Zhao.

Ethics declarations

Conflict of interest

Ming Zeng is an editorial board member for Nuclear Science and Techniques and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no conflict of interest.

Additional information

This work was partially supported by the Natural Science Foundation of China (Nos. 12004353, 11975214, 11991071, 11905202, 12175212, and 12120101005) and the Key Laboratory Foundation of the Science and Technology on Plasma Physics Laboratory (Nos. 6142A04200103 and 6142A0421010).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, JX., Ma, G., Yu, MH. et al. Optimized online filter stack spectrometer for ultrashort X-ray pulses. NUCL SCI TECH 35, 48 (2024). https://doi.org/10.1007/s41365-024-01391-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01391-8

Keywords

Navigation