Skip to main content
Log in

Study the effect of microstructure changes on the photocatalytic performance of Ni and Zn nanoferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organic pollutants in water remain a hazard to the ecosystem, emphasizing the ongoing concern. Therefore, this study focused on the nano-sized spinel ferrite as a photocatalyst for dye degradation and probing how ferrite microstructure influences the photo-degradation efficiency. The NiFe2O4 and ZnFe2O4 nanoparticles (NPs) were synthesized using the co-precipitation and sol–gel methods, respectively. The effects of microstructure changes of pristine and annealed (450, 600, and 800 °C) ferrites were systematically examined using the positron annihilation lifetime (PAL) and Doppler broadening (DB) techniques. Rigorous analysis, featuring X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM), confirmed the cubic spinel nanostructure for the synthesized ferrite samples as a major phase. The optical properties of the prepared ferrite NPs were studied using the UV–Vis spectroscopy. Particle size ranged from 5.0 to 34.7 nm for NiFe2O4 and from 11.8 to 50.4 nm for ZnFe2O4. UV–Vis spectra unveiled bandgap energy ranges of 3.76–4.34 and 4.31–4.60 eV for Ni and Zn ferrites, respectively. The photo-degradation efficiency of methylene blue dye catalyzed by the prepared Ni and Zn ferrite NPs was investigated. Comparing PAL and DB parameters revealed notable differences, attributed to distinct crystallinity arising from varied synthesis methods. Remarkably, the highest photo-degradation efficiency was observed in the annealed NiFe2O4 at 800 °C and pristine ZnFe2O4 samples, surpassing others. This achievement was attributed to factors such as enhanced ordered crystallinity, increased vibrational modes, optimal particle size, fitting optical properties, and favorable defect characteristics. This study’s novelty lies in highlighting the pivotal role of microstructure in governing ferrite NPs photocatalyst performance. We underscore the significance of the defect reduction, regardless of its type, size or concentration, to substantially enhance the photo-degradation efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B. 215, 37–55 (2017). https://doi.org/10.1016/j.mseb.2016.11.002

    Article  Google Scholar 

  2. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: synthesis, characterization and applications. Ceram Int. 46, 15740–15763 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287

    Article  Google Scholar 

  3. M. Kumar, H. Singh Dosanjh, S.J. Singh, K. Monir, H. Singh, Review on magnetic nanoferrites and their composites as alternatives in wastewater treatment: synthesis, modifications and applications. Environ. Sci. (Camb). 6, 491–514 (2020). https://doi.org/10.1039/C9EW00858F

    Article  Google Scholar 

  4. E.A. Arrasheed et al., Dielectric, electrical, magnetic, and mechanical properties of Ni-Al ferrite/PANI composite films. Phase Transit. 95(11), 803–822 (2022). https://doi.org/10.1080/01411594.2022.2117043

    Article  Google Scholar 

  5. O.M. Hemeda, A. Tawfik, A.M.A. Henaish, B.I. Salem, Spectral, electrical, thermoelectrical and dielectric properties of (Zn, Zr) Co-doped CuFe2O4. J. Supercond. Nov. Magn. 31(11), 3733–3752 (2018). https://doi.org/10.1007/s10948-018-4582-2

    Article  Google Scholar 

  6. K. Malaie, Z. Heydari, M. Reza, Spinel nano-ferrites as low-cost (photo)electrocatalysts with unique electronic properties in solar energy conversion systems. Int. J. Hydrogen Energy 46(5), 3510–3529 (2020). https://doi.org/10.1016/j.ijhydene.2020.11.009

    Article  Google Scholar 

  7. S.B. Narang, K. Pubby, Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 519(June), 2021 (2020). https://doi.org/10.1016/j.jmmm.2020.167163

    Article  Google Scholar 

  8. K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review. Sustain. Mater. Technol. 23, e00140 (2020). https://doi.org/10.1016/j.susmat.2019.e00140

    Article  Google Scholar 

  9. Y. Hong, A. Ren, Y. Jiang, J. He, L. Xiao, W. Shi, Sol-gel synthesis of visible-light-driven Ni(1–x)Cu(x)Fe2O4 photocatalysts for degradation of tetracycline. Ceram. Int. 41(1), 1477–1486 (2015). https://doi.org/10.1016/j.ceramint.2014.09.082

    Article  Google Scholar 

  10. P. Guo, G. Zhang, J. Yu, H. Li, X.S. Zhao, Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite. Colloids Surfaces A Physicochem. Eng. Asp. 395, 168–174 (2012). https://doi.org/10.1016/j.colsurfa.2011.12.027

    Article  Google Scholar 

  11. G.L. Shouheng Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, Controlled synthesis of MFe2O4 (M = Mn, Fe Co, Ni and Zn) nanoparticles. J. Am. Chem. Soc. 126(1), 273–279 (2004)

    Article  Google Scholar 

  12. E. Kang, J. Park, Y. Hwang, M. Kang, J.G. Park, T. Hyeon, Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals. J. Phys. Chem. B 108(37), 13932–13935 (2004). https://doi.org/10.1021/jp049041y

    Article  Google Scholar 

  13. R. Fernandes, C. Magalhaes, C. Amorim, V. Amaral, B. Almeida, E. Castanheira, P. Coutinho, Magnetic nanoparticles of zinc/calcium ferrite decorated with silver for photodegradation of dyes. Materials. 12, 3582 (2019). https://doi.org/10.3390/ma12213582

    Article  ADS  Google Scholar 

  14. F. Alsaif, K. Alibrahim, T. Sharshar, M. Refat, Physicochemical and spectroscopic study of Co(II), Ni(II), Cr(III), and Fe(III) cholyltaurine adducts. Russ. J. Gen. Chem. 87, 2944–2950 (2017). https://doi.org/10.1134/S1070363217120362

    Article  Google Scholar 

  15. M. Kooti, A. Sedeh, Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. J Mater Sci Technol. 29, 34–38 (2013). https://doi.org/10.1016/j.jmst.2012.11.016

    Article  Google Scholar 

  16. S.A. Faghidian, K.K. Żur, I. Elishakoff, Nonlinear flexure mechanics of mixture unified gradient nanobeams. Commun. Nonlinear Sci. Numer. Simul. 117, 106928 (2023). https://doi.org/10.1016/j.cnsns.2022.106928

    Article  MathSciNet  MATH  Google Scholar 

  17. C.M.S. Negi, D. Kumar, S.K. Gupta, J. Kumar, Theoretical analysis of resonant cavity p-type quantum dot infrared photodetector. IEEE J. Quantum Electron. 49, 839–845 (2013). https://doi.org/10.1109/JQE.2013.2279566

    Article  ADS  Google Scholar 

  18. S.A. Faghidian, D. Goudar, G.H. Farrahi, D.J. Smith, Measurement, analysis and reconstruction of residual stresses. J. Strain Anal. Eng. Des. 47, 254–264 (2012). https://doi.org/10.1177/0309324712441146

    Article  Google Scholar 

  19. S.A. Faghidian, On non-linear flexure of beams based on non-local elasticity theory. Int. J. Eng. Sci. 124, 49–63 (2018). https://doi.org/10.1016/j.ijengsci.2017.12.002

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Mishra, B.P. Pandey, D. Kumar, V.K. Tomar, A. Dasgupta, S. Kumar, Investigating the infrared absorption and optoelectronic properties of Mn-doped MoSe2ML by adsorption of NOxGas molecules. IEEE Sens. J. 22, 22564–22570 (2022). https://doi.org/10.1109/JSEN.2022.3217817

    Article  ADS  Google Scholar 

  21. D. Kumar, C.M.S. Negi, S.K. Gupta, J. Kumar, Effect of shape anisotropy and size on the electronic structure of CdSe/ZnSe quantum dots. IEEE Trans. Nanotechnol. 12, 925–930 (2013). https://doi.org/10.1109/TNANO.2013.2276413

    Article  ADS  Google Scholar 

  22. Y.-H. Chiu, T.-F.M. Chang, C.-Y. Chen, M. Sone, Y.-J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9, 430 (2019). https://doi.org/10.3390/catal9050430

    Article  Google Scholar 

  23. J. Liu, Z. Wei, W. Shangguan, Defects engineering in photocatalytic water splitting materials. ChemCatChem 11, 6177–6189 (2019). https://doi.org/10.1002/cctc.201901579

    Article  Google Scholar 

  24. Y. Li, Y. Han, X. Song, T. Li, G. Liu, Z. Chen, Z. Dong, Y. Liu, Sized dependence and microstructural defects on highly photocatalytic activity based on multisized CdTe quantum dots sensitized TiO2. Surf. Interface Anal. 51, 968–981 (2019). https://doi.org/10.1002/sia.6679

    Article  Google Scholar 

  25. H. Ma, C. Liu, A mini-review of ferrites-based photocatalyst on application of hydrogen production. Front. Energy. 15, 621–630 (2021). https://doi.org/10.1007/s11708-021-0761-0

    Article  Google Scholar 

  26. K. Jalaiah, K. Vijaya Babu, Structural, magnetic and electrical properties of nickel doped Mn-Zn spinel ferrite synthesized by sol-gel method. J. Magn. Magn. Mater. 423(June 2016), 275–280 (2017). https://doi.org/10.1016/j.jmmm.2016.09.114

    Article  ADS  Google Scholar 

  27. P. Gaikwad, S. Zimur, S. Sabale, P. Kamble, Co2+ substituted ZnCuFe2O4 (0.0 ≤ x ≤ 0.5) ferrites: synthesis, magneto-structural and optical properties for their photocatalytic performance. J. Supercond. Nov. Magn. 4, 2551–2558 (2019)

    Article  Google Scholar 

  28. P. Dhiman et al., Nanostructured magnetic inverse spinel Ni–Zn ferrite as environmental friendly visible light driven photo-degradation of levofloxacin. Chem. Eng. Res. Des. 175, 85–101 (2021). https://doi.org/10.1016/j.cherd.2021.08.028

    Article  Google Scholar 

  29. L. Vimala Devi et al., Synthesis, defect characterization and photocatalytic degradation efficiency of Tb doped CuO nanoparticles. Adv. Powder Technol. 28, 3026 (2017). https://doi.org/10.1016/j.apt.2017.09.013

    Article  Google Scholar 

  30. Y.C. Jean, P. Mallon, D. Schrader, Principles and Applications of Positron & Positronium Chemistry (World Sci. Pub Co. Inc., 2003), pp.329–348

    Book  Google Scholar 

  31. A. Dupasquier, A.P. Mills Jr., Positron Spectroscopy of Solids (IOS Press, Amsterdam, 1995)

    Google Scholar 

  32. H.E. Hassan, T. Sharshar, M. Hessien, O. Mohamed Hemeda, Effect of γ-rays irradiation on Mn-Ni ferrites: Structure, magnetic properties and positron annihilation studies. Nucl. Instrum. Methods Phys. Res. B. 304, 72–79 (2013). https://doi.org/10.1016/j.nimb.2013.03.053

    Article  ADS  Google Scholar 

  33. H. Nikmanesh, P. Kameli, S.M. Asgarian, S. Karimi, M. Moradi, Z. Kargar, J. Ventura, B. Bordalo, H. Salamati, Positron annihilation lifetime, cation distribution and magnetic features of Ni1-xZnxFe2-xCoxO4 ferrite nanoparticles. RSC Adv. 7, 22320–22328 (2017). https://doi.org/10.1039/c7ra01975k

    Article  ADS  Google Scholar 

  34. Z. Kargar, S.M. Asgarian, M. Mozaffari, Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles. Nucl. Instrum. Methods Phys Res B. 375, 71–78 (2016). https://doi.org/10.1016/j.nimb.2016.03.041

    Article  ADS  Google Scholar 

  35. C. Akshhayya, M.K. Okla, A.A. Al-ghamdi, S.A. Al-amri, A.A. Alatar, M.A. Abdel-Maksoud, M. Aufy, S.S. Khan, Nano-architecture of intimate n-CuFe2O4 coupled p-NiO for enhanced white light photocatalysis: kinetics and intrinsic mechanism. J Clust Sci. (2022). https://doi.org/10.1007/s10876-022-02396-2

    Article  Google Scholar 

  36. V. Manikandan, A. Mirzaei, S. Vigneselvan, S. Kavita, R.S. Mane, S.S. Kim, J. Chandrasekaran, Role of ruthenium in the dielectric, magnetic properties of nickel ferrite (Ru–NiFe2O4) nanoparticles and their application in hydrogen sensors. ACS Omega 4, 12919–12926 (2019). https://doi.org/10.1021/acsomega.9b01562

    Article  Google Scholar 

  37. Z. Zhengru, F. Liu, H. Zhang, J. Zhang, L. Han, Photocatalytic degradation of 4-chlorophenol over Ag/MFe2O4 (M= Co, Zn, Cu, and Ni) prepared by a modified chemical co-precipitation method: a comparative study. RSC Adv. (2015). https://doi.org/10.1039/C5RA04608D

    Article  Google Scholar 

  38. P. Garcia-Muñoz, F. Fresno, V.A. de la Peña O’Shea, N. Keller, Ferrite materials for photoassisted environmental and solar fuels applications. Top Curr. Chem. 378, 6 (2019). https://doi.org/10.1007/s41061-019-0270-3

    Article  Google Scholar 

  39. Z. Song, Q. Liu, Tolerance factor and phase stability of the normal spinel structure. Cryst. Growth Des. 20, 2014–2018 (2020). https://doi.org/10.1021/acs.cgd.9b01673

    Article  Google Scholar 

  40. J. Tauc, Amorphous and Liquid Semiconductors (Springer Science & Business Media, 2012)

    Google Scholar 

  41. J. Melsheimer, D. Ziegler, Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide. Thin Solid Films 129, 35–47 (1985). https://doi.org/10.1016/0040-6090(85)90092-6

    Article  ADS  Google Scholar 

  42. A. Ahmad, A. Alsaad, Q. Al Bataineh, M. Al-Naafa, Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl. Phys. A (2018). https://doi.org/10.1007/s00339-018-1875-z

    Article  Google Scholar 

  43. H.M.H. Zakaly, M. Rashad, H.O. Tekin, H.A. Saudi, S.A.M. Issa, A.M.A. Henaish, Synthesis, optical, structural and physical properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: an experimental and simulation study. Opt. Mater. (Amst) 114(February), 110942 (2021). https://doi.org/10.1016/j.optmat.2021.110942

    Article  Google Scholar 

  44. A.M.A. Henaish, A.S. Abouhaswa, Effect of WO3 nanoparticle doping on the physical properties of PVC polymer. Bull. Mater. Sci. (2020). https://doi.org/10.1007/s12034-020-02109-3

    Article  Google Scholar 

  45. T. Sharshar, M. Hussein, An optimization of energy window settings for positron annihilation lifetime spectrometers. Nucl. Instrum. Methods Phys. Res. A. 546, 584–590 (2005). https://doi.org/10.1016/j.nima.2005.02.045

    Article  ADS  Google Scholar 

  46. J. Kansy, Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods Phys Res A. 374, 235–244 (1996). https://doi.org/10.1016/0168-9002(96)00075-7

    Article  ADS  Google Scholar 

  47. E.-A. McGonigle, J.J. Liggat, R.A. Pethrick, S.D. Jenkins, J.H. Daly, D. Hayward, Permeability of N2, Ar, He, O2 and CO2 through biaxially oriented polyester films—dependence on free volume. Polymer (Guildf). 42, 2413–2426 (2001). https://doi.org/10.1016/S0032-3861(00)00615-7

    Article  Google Scholar 

  48. A.O. Porto, G.G. Silva, W.F. Magalhães, Free volume-size dependence on temperature and average molecular-weight in poly(ethylene oxide) determined by positron annihilation lifetime spectroscopy. J Polym Sci B Polym Phys. 37, 219–226 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990201)37:3%3c219::AID-POLB5%3e3.0.CO;2-I

    Article  ADS  Google Scholar 

  49. M. Eldrup, D. Lightbody, J.N. Sherwood, The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys. 63, 51–58 (1981). https://doi.org/10.1016/0301-0104(81)80307-2

    Article  Google Scholar 

  50. K. Ito, Y. Ujihira, T. Yamashita, K. Horie, Free-volume change in volume phase transition of polyacrylamide gel as studied by positron annihilation: salt dependence. J Polym Sci B Polym Phys 37, 2634–2641 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990915)37:18

    Article  ADS  Google Scholar 

  51. Instytut Fizyki Jądrowej PAN, (n.d.). https://www.ifj.edu.pl/. Accessed 24 June 2023

  52. M. Baskar, A. Patania, X-ray powder diffraction data—identification and structure elucidation of unknown stone—rietveld refinement approach. J. Biophys. Checm. 11, 51–61 (2020). https://doi.org/10.4236/jbpc.2020.114005

    Article  Google Scholar 

  53. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, R. Rajajeyaganthan, M. Arunpandian, J. Nandha Gopal, T.K. Thirumalaisamy, Surfactants-assisted synthesis of ZnWO4 nanostructures: a view on photocatalysis, photoluminescence and electron density distribution analysis. Mater. Character. 159, 110035 (2020). https://doi.org/10.1016/j.matchar.2019.110035

    Article  Google Scholar 

  54. G.S. Shahane, A. Kumar, M. Arora, R.P. Pant, K. Lal, Synthesis and characterization of Ni-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 322(8), 1015–1019 (2010). https://doi.org/10.1016/j.jmmm.2009.12.006

    Article  ADS  Google Scholar 

  55. K. Agarwal, M. Prasad, M. Katiyar, R. Kumar, N.E. Prasad, Preparation and characterization of Ni 0.5 Zn 0.5 Fe 2 O 4 + polyurethane nanocomposites using melt mixing method. SILICON 11(2), 1035–1045 (2019). https://doi.org/10.1007/s12633-018-9900-6

    Article  Google Scholar 

  56. J.K. Jogi, S.K. Singhal, R. Jangir, A. Dwivedi, A.R. Tanna, R. Singh, M. Gupta, P.R. Sagdeo, Investigation of the structural and optical properties of zinc ferrite nanoparticles synthesized via a green route. J. Electron. Mater. 51, 5482–5491 (2022). https://doi.org/10.1007/s11664-022-09813-2

    Article  ADS  Google Scholar 

  57. S.A. Jadhav, S.B. Somvanshi, M.V. Khedkar, S.R. Patade, K.M. Jadhav, Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B. J. Mater. Sci. Mater. Electron. 31, 11352–11365 (2020). https://doi.org/10.1007/s10854-020-03684-1

    Article  Google Scholar 

  58. R.M. Borade, S.B. Somvanshi, S.B. Kale, R.P. Pawar, K.M. Jadhav, Spinel zinc ferrite nanoparticles: An active nanocatalyst for microwave irradiated solvent free synthesis of chalcones. Mater. Res. Express. 7, 16116 (2020). https://doi.org/10.1088/2053-1591/ab6c9c

    Article  ADS  Google Scholar 

  59. L.T.M. Thy, N.N.K. Tuyen, N.D. Viet, L.M. Huong, N.T. Tinh, T.H. Lin, N.T. Son, D.T.Y. Oanh, M.T. Phong, N.H. Hieu, Nickel ferrite nanoparticles-doped graphene oxide as a heterogeneous Fenton catalyst: synthesis, characterization, and catalytic application. Vietnam J. Chem. 60, 532–539 (2022). https://doi.org/10.1002/vjch.202200005

    Article  Google Scholar 

  60. S. Sagadevan, Z.Z. Chowdhury, R.F. Rafique, Preparation and characterization of nickel ferrite nanoparticles via co-precipitation method. Mater. Res. 21, 21–25 (2018). https://doi.org/10.1590/1980-5373-mr-2016-0533

    Article  Google Scholar 

  61. Z. Ayazi, M.M. Khoshhesab, Z. Amani-Ghadim, Synthesis of nickel ferrite nanoparticles as an efficient magnetic sorbent for removal of an azo-dye: Response surface methodology and neural network modeling article info Synthesis of nickel ferrite nanoparticles as an efficient magnetic sorbent for remo. Nanochem Res. 3, 109–123 (2018). https://doi.org/10.22036/ncr.2018.01.012

    Article  Google Scholar 

  62. A. Banerjee, S. Bid, H. Dutta, S. Chaudhuri, D. Das, S. Pradhan, Microstructural changes and effect of variation of lattice strain on positron annihilation lifetime parameters of zinc ferrite nanocomposites prepared by high enegy ball-milling. Mater. Res. 15, 1022 (2012)

    Article  Google Scholar 

  63. S. Bandyopadhyay, A. Roy, D. Das, S.S. Ghugre, J. Ghose, Investigation of nanocrystalline CoFe2O4 by positron annihilation lifetime spectroscopy. Philos. Mag. 83, 765–773 (2003). https://doi.org/10.1080/0141861021000042271

    Article  ADS  Google Scholar 

  64. R.N. West, Positron studies of lattice defects in metals, in Positrons in solids. ed. by P. Hautojärvi (Springer Berlin Heidelberg, Berlin, 1979), pp.89–144. https://doi.org/10.1007/978-3-642-81316-0_3

    Chapter  Google Scholar 

  65. S. Ghosh, P.M.G. Nambissan, R. Bhattacharya, Positron annihilation and Mössbauer spectroscopic studies of In3+ substitution effects in bulk and nanocrystalline MgMn0.1Fe1.9−xInxO4. Phys. Lett. A. 325, 301–308 (2004). https://doi.org/10.1016/j.physleta.2004.03.062

    Article  ADS  Google Scholar 

  66. C. He, T. Suzuki, V. Shantarovich, N. Djourelov, K. Kondo, Y. Ito, Positron annihilation studies of hyper-cross-linked polystyrenes. Chem. Phys. 303, 219–226 (2004). https://doi.org/10.1016/j.chemphys.2004.06.003

    Article  Google Scholar 

  67. M. Sarkar, S. Denrah, M. Das, M. Das, Statistical optimization of bio-mediated silver nanoparticles synthesis for use in catalytic degradation of some azo dyes. Chem. Phys. Impact. 3, 100053 (2021). https://doi.org/10.1016/j.chphi.2021.100053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AMAH: conceptualization, validation, methodology, formal analysis, writing—original draft, writing—review and editing; HD: methodology, investigation, formal analysis. TS: conceptualization, validation, writing—original draft, writing—review and editing; ME: conceptualization, writing—review and editing; OMH: conceptualization, validation, writing—original draft, writing—review and editing; AE: conceptualization, methodology, formal analysis, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to A. M. A. Henaish.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henaish, A.M.A., Darwish, H.R., Sharshar, T. et al. Study the effect of microstructure changes on the photocatalytic performance of Ni and Zn nanoferrites. Appl. Phys. A 129, 745 (2023). https://doi.org/10.1007/s00339-023-06999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06999-y

Keywords

Navigation