Skip to main content

Advertisement

Log in

Nano-architecture of Intimate n-CuFe2O4 Coupled p-NiO for Enhanced White Light Photocatalysis: Kinetics and Intrinsic Mechanism

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Rapid industrialization demands for effective nano-photocatalyst that works under visible-light irradiation. The effective p–n interfacial engineering in nanoparticles (NPs) offers better photocatalytic performance. High performing nano-heterojunction of intimately coupled n-copper ferrite (CuFe2O4) NPs on p-nickel oxide (NiO) NPs was prepared that mitigates the charge recombination. X-ray diffraction confirmed the coexistence of the rhombohedral NiO and tetragonal CuFe2O4 in the prepared NCs. The bandgap energy of NiO/CuFe2O4 NCs-30 is 2.18 eV which supports visible light photocatalysis. The rate constant for degrading the methylene blue (MB) dye by NiO/CuFe2O4 NCs-30 was about 0.010 min−1 which is 1.42 times and 2 times higher when compared to NiO and CuFe2O4 NPs. The reusability efficiency was 94.54%. It has been found that both OH⋅ and ⋅O2 radical formed and contributed in degrading MB dye. The importance of the prepared NCs can be understood from its effective performance and it can be concluded that it has high photocatalytic potential to degrade the aquatic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Fu and T. Viraraghavan (2001). Bioresour. Technol. 79, 251.

    Article  CAS  PubMed  Google Scholar 

  2. A. Baruah, V. Chaudhary, R. Malik, and V. K. Tomer, Nanotechnology in Water and Wastewater Treatment. (2019), p. 337.

  3. N. Lee, D. Yoo, D. Ling, M. H. Cho, T. Hyeon, and J. Cheon (2015). Chem. Rev. 115, 10637.

    Article  CAS  PubMed  Google Scholar 

  4. R. Srivastava and B. Yadav (2012). Int. J. Green Nanotechnol. 4, 141.

    Article  CAS  Google Scholar 

  5. B. Rajesh Babu and T. Tatarchuk (2018). Mater. Chem. Phys. 207, 534.

    Article  CAS  Google Scholar 

  6. M. M. Rashad, R. M. Mohamed, M. A. Ibrahim, L. F. M. Ismail, and E. A. Abdel-Aal (2012). Adv. Powder Technol. 23, 315.

    Article  CAS  Google Scholar 

  7. N. Masunga, O. K. Mmelesi, K. K. Kefeni, and B. B. Mamba (2019). J. Environ. Chem. Eng. 7, 103179.

    Article  CAS  Google Scholar 

  8. S. L. Brock, S. Duan, Z. R. Tian, O. Giraldo, H. Zhou, and S. L. Suib (1998). Chem. Mater. 10, 2619.

    Article  CAS  Google Scholar 

  9. C. Li, G. Ding, X. Liu, P. Huo, Y. Yan, Y. Yan, and G. Liao (2022). Chem. Eng. 435, 134740.

    Article  CAS  Google Scholar 

  10. M. K. Okla, B. Janani, S. Swetha, A. A. Alatar, I. A. Alaraidh, A. A. Al-ghamdi, R. F. Abdelaziz, M. A. Abdel-Maksoud, M. K. Rahiman, and S. S. Khan (2022). J. Alloys Compd. 925, 166611.

    Article  CAS  Google Scholar 

  11. B. Janani, M. K. Okla, S. S. Al-Amri, A. Mohebaldin, Y. A. Alwasel, H. AbdElgawad, M. A. Abdel-Maksoud, A. M. Thomas, L. L. Raju, and S. S. Khan (2022). Chemosphere. 296, 134012.

    Article  CAS  PubMed  Google Scholar 

  12. Z. Heidari, R. Alizadeh, A. Ebadi, N. Oturan, and M. A. Oturan (2020). Sep. Purif. Technol. 242, 116800.

    Article  CAS  Google Scholar 

  13. X. Wang, J. Jian, Z. Yuan, J. Zeng, L. Zhang, T. Wang, and H. Zhou (2020). Eur. Polym. J. 15, 109515.

    Article  Google Scholar 

  14. D. Mondal, S. Das, B. K. Paul, D. Bhattacharya, D. Ghoshal, A. L. Gayen, and L. Das (2019). Mater. Res. Bull. 115, 159.

    Article  CAS  Google Scholar 

  15. Y. Zhao, C. Lin, H. Bi, Y. Liu, and Q. Yan (2017). Appl. Surf. Sci. 392, 701.

    Article  CAS  Google Scholar 

  16. S. Das, S. Das, and S. Sutradhar (2017). Ceram. Int. 43, 6932.

    Article  CAS  Google Scholar 

  17. W. Li, X. Cui, R. Zeng, G. Du, Z. Sun, R. Zheng, S. P. Ringer, and S. X. Dou (2015). Sci. Rep. 5, 1.

    Google Scholar 

  18. T. Gao, M. Glerup, F. Krumeich, R. Nesper, H. Fjellvag, and P. Norby (2008). J. Phys. Chem. C 34, 13134.

    Article  Google Scholar 

  19. T. Chhabra, A. Kumar, A. Bahuguna, and V. Krishnan (2019). Vacuum 160, 333.

    Article  CAS  Google Scholar 

  20. S. Samakchi, N. Chaibakhsh, and Z. Moradi-Shoeili (2018). J. Photochem. Photobiol. A 367, 420.

    Article  CAS  Google Scholar 

  21. Y. Ding, L. Zhu, N. Wang, and H. Tang (2013). Appl. Catal. B 129, 153.

    Article  CAS  Google Scholar 

  22. M. S. Amulya, H. P. Nagaswarupa, H. A. Kumar, C. R. Ravikumar, K. B. Kusuma, and S. C. Prashantha (2021). J. Phys. Chem. Solids. 148, 109756.

    Article  CAS  Google Scholar 

  23. B. Li, J. Hu, H. Xiong, and Y. Xiao (2020). ACS Omega 5, 9398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. M. Hosseinpour-Mashkani, A. Sadeghinia, Z. Zarghami, and K. Motevalli (2016). J. Mater. Sci. Mater. Electron. 27, 365.

    Article  CAS  Google Scholar 

  25. H. Salari and H. H. Hosseini (2021). Mater. Res. Bull. 133, 111046.

    Article  CAS  Google Scholar 

  26. J. Chen, B. Zhu, Y. Sun, S. Yin, Z. Zhu, and J. Li (2018). J. Braz. Chem. Soc. 29, 79.

    CAS  Google Scholar 

  27. J. C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur (2000). Phys. Chem. Chem. Phys. 6, 1319.

    Article  Google Scholar 

  28. J. Liqiang, S. Dejun, W. Baiqi, L. Shudan, X. Baifu, F. Honggang, and S. Jiazhong (2006). J. Mol. Catal. Chem. 244, 193.

    Article  Google Scholar 

  29. L. Q. Wu, L. C. Li, S. Q. Li, Z. Z. Li, G. D. Tang, W. H. Qi, L. C. Xue, X. S. Ge, and L. L. Ding (2015). AIP Adv. 24, 097210.

    Article  Google Scholar 

  30. Z. Li, C. Guo, J. Lyu, Z. Hu, and M. Ge (2019). J. Hazard. Mater. 373, 85.

    Article  CAS  PubMed  Google Scholar 

  31. P. L. Reddy, K. Deshmukh, K. Chidambaram, M. M. Ali, K. K. Sadasivuni, Y. R. Kumar, R. Lakshmipathy, and S. K. Pasha (2019). J. Mater. Sci.: Mater. Electron. 5, 4676.

    Google Scholar 

  32. A. Kumar, L. Rout, L. S. Achary, S. K. Mohanty, and P. Dash (2017). New J. Chem. 41, 10568.

    Article  CAS  Google Scholar 

  33. S. Ayyappan, J. Philip, and B. Raj (2009). J. Phys. Chem. 113, 590.

    CAS  Google Scholar 

  34. T. Gao, M. Glerup, F. Krumeich, R. Nesper, H. Fjellvag, and P. Norby (2008). J. Phys. Chem. 112, 13134.

    CAS  Google Scholar 

  35. C. M. Julien, M. Massot, and C. Poinsignon (2004). Spectrochim. Acta A 60, 689.

    Article  CAS  Google Scholar 

  36. Z. Wang, R. T. Downs, V. Pischedda, R. Shetty, S. K. Saxena, C. S. Zha, Y. S. Zhao, D. Schiferl, and A. Waskowska (2003). Phys. Rev. B 68, 094101.

    Article  Google Scholar 

  37. K. Verma, A. Kumar, and D. Varshney (2013). Curr. Appl. Phys. 13, 467.

    Article  Google Scholar 

  38. M. Peleg (1993). J. Food Process Eng. 16, 21.

    Article  Google Scholar 

  39. Z. Zhao, Y. Wang, J. Xu, C. Shang, and Y. Wang (2015). Appl. Surf. Sci. 351, 416.

    Article  CAS  Google Scholar 

  40. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, F. Rouquerol, and K. S. Sing (2015). Pure Appl. Chem. 87, 1051.

    Article  CAS  Google Scholar 

  41. A. Mills (2012). Appl. Catal. B 128, 144.

    Article  CAS  Google Scholar 

  42. Y. B. Kim, D. Cho, and W. H. Park (2010). J. Appl. Polym. Sci. 116, 449.

    Article  CAS  Google Scholar 

  43. S. K. Mohapatra, N. Kondamudi, S. Banerjee, and M. Misra (2008). Langmuir 24, 11276.

    Article  CAS  PubMed  Google Scholar 

  44. N. Wang, X. Li, Y. Wang, Y. Shang, X. Zhuang, H. Li, and Z. Zhou (2019). Chem. Eng. J. 374, 748.

    Article  CAS  Google Scholar 

  45. R. Wang, Q. Hao, J. Feng, G. C. Wang, H. Ding, D. Chen, and B. Ni (2019). J. Alloys Compd. 786, 418.

    Article  CAS  Google Scholar 

  46. B. Wang, Q. Li, Y. Lv, H. Fu, D. Liu, Y. Feng, H. Xie, and H. Qu (2021). Chem. Eng. J. 416, 129162.

    Article  CAS  Google Scholar 

  47. B. Janani, A. Syed, A. M. Thomas, S. Al-Rashed, A. M. Elgorban, L. L. Raju, and S. S. Khan (2021). Physica E 130, 114664.

    Article  CAS  Google Scholar 

  48. J. J. Chen, J. C. Wu, P. C. Wu, and D. P. Tsai (2012). J. Phys. Chem. 116, 26535.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project Number (RSP-2022R483) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad K. Okla or S. Sudheer Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 379 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akshhayya, C., Okla, M.K., Al-ghamdi, A.A. et al. Nano-architecture of Intimate n-CuFe2O4 Coupled p-NiO for Enhanced White Light Photocatalysis: Kinetics and Intrinsic Mechanism. J Clust Sci 34, 2459–2469 (2023). https://doi.org/10.1007/s10876-022-02396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02396-2

Keywords

Navigation