Skip to main content

Advertisement

Log in

Angular poling effect on cymbal piezoelectric structure using rhombohedral and tetragonal PMN-0.33PT for energy harvesting applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cymbal transducers have been discovered as a viable design for piezoelectric energy harvesting under heavy impact loads. However, low-output voltage remains a source of concern; therefore, many promising approaches for enhancing performance efficiency are crucial in the field of piezoelectricity. This study presents a viable angular poling approach for flex tensional based cymbal structures solely for energy harvesting applications. Elementary and Euler angular poling are two types of angular poling introduced for cymbal piezoelectric transducers. Using the energy method, theoretical modelling is performed on a cymbal structure exposed to a 1000 N impact force. Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-0.33 PT) is utilised as a piezoelectric material because of its strong piezoelectric properties in both tetragonal and rhombohedral symmetry. The findings show that Euler angular poling outperforms elementary angular poling due to its reliance on two angles. When elementary angular poling is used, the voltage and energy reach 108.9 V and 380.1 μJ, respectively, resulting in a 198.02% and 2800% enhancement over the original PMN-0.33PT material. Similarly, in Euler angular poling, voltage and energy reached 123.59 V and 450 μJ, respectively, resulting in increase of 238.1% and 3340%. Finally, potential applications include powering light-emitting diodes and charging small portable electronic devices such as digital cameras and cell phones. A large-scale system can be built using cymbal piezoelectric tiles, making it suitable for use in industrial applications such as ultrasonic welding, diesel fuel injectors, and robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\(a_{0}\) :

Distance from that apex to the top of the cavity [mm]

\(a\) :

Radial distance from the imaginary apex of the cone to the outer edge [mm]

\(\lambda\) :

Cavity angle [degree]

\(C_{s}\) :

In-plane force per unit circumference [mm]

\(\delta\) :

Angle between the vertical load axis and the slope of the end cap cavity [degree]

\(d_{ij}\) :

Piezoelectric strain coefficient, i varies from 1 to 3 and j varies from 1 to 6 [C/N]

\(\varepsilon_{c}\) :

Strain developed in laminar composite due to compression

\(\varepsilon_{t}\) :

Strain developed in laminar composite due to tension

\(E_{3}\) :

Electric field along third direction [V/m]

\(F_{u}\) :

Edge load per unit length [N/m]

\(h_{e}\) :

Thickness of metal end cap [mm]

\(h_{c}\) :

Height of cavity [mm]

\(h_{p}\) :

Thickness of piezoelectric material [mm]

\(h_{s}\) :

Thickness of substrate material [mm]

\(P\) :

Electric polarisation [Q/m2]

\(R_{a}\) :

Radius of apex [mm]

\(R_{c}\) :

Radius of cavity [mm]

\(R\) :

Radius of end cap [mm]

\(s_{ij}\) :

Compliance coefficients i and j ranges from 1 to 6 [m2/N]

\(Y_{s}\) :

Elastic modulus of substrate material [Pa]

\(Y_{p}\) :

Elastic modulus of piezoelectric material [Pa]

\(Y_{c}\) :

Elastic modulus of laminar composite [Pa]

\(\in_{ij}\) :

Electrical permittivity coefficient, i and j varies from 1 to 3 [C/Vm]

\(\psi\),\(\chi\) :

Transformation matrices

\(\sigma_{t}\),\(\sigma_{c}\) :

Tensile and compressive stresses generated in cymbal [Pa]

\(\sigma_{tp}\) :

Tensile stress generated in piezoelectric material [Pa]

\(\sigma_{ts}\) :

Tensile stress generated in substrate material [Pa]

\(\sigma_{x}\) :

Stress generated in x direction [Pa]

\(\sigma_{y}\) :

Stress generated in y direction [Pa]

\(dU_{tp}\) :

Energy generated by tension for piezoelectric in a small volume of the inner cavity region [J]

\(dU_{ts}\) :

Energy generated by tension for substrate in a small volume of the inner cavity region [J]

\(dU_{cp}\) :

Energy developed for piezoelectric due to compression for small volume at outer region [J]

\(dU_{cs}\) :

Energy developed for substrate due to compression for small volume at outer region [J]

\(\eta\),\(\kappa\),\(\varphi\) :

Angular poling angles [degree]

\(Q\) :

Total electrical charge [C]

\(Q_{gen}\) :

Charge generated with no applied external electric field or voltage [C]

\(C\) :

Capacitance of cymbal structure [F]

\(V\) :

Voltage generated in cymbal structure [V]

\(U\) :

Electrical energy generated in cymbal structure [J

7. References

  1. S. Kumar, D. Singh, R. Kumar et al., No-wear vibration energy harvester based on a triboelectric mechanism. J. Electron. Mater. 50, 7057–7070 (2021)

    ADS  Google Scholar 

  2. W. Chen, Y. Liu, Y. Liu et al., Design and experimental evaluation of a novel stepping linear piezoelectric actuator. Sensors Actuators, A Phys. 276, 259–266 (2018)

    Google Scholar 

  3. C. Eichhorn, F. Goldschmidtboeing, P. Woias, Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam. J. Micromech. Microeng. (2009). https://doi.org/10.1088/0960-1317/19/9/094006

    Article  Google Scholar 

  4. M. Leinonen, J. Palosaari, J. Juuti et al., Combined electrical and electromechanical simulations of a piezoelectric cymbal harvester for energy harvesting from walking. J. Intell. Mater. Syst. Struct. 25, 391–400 (2014)

    Google Scholar 

  5. Y. Kuang, A. Daniels, M. Zhu, A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments. J. Phys. D Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/aa7b28

    Article  Google Scholar 

  6. H.W. Kim, A. Batra, S. Priya et al., Energy harvesting using a piezoelectric ‘cymbal’ transducer in dynamic environment. Jpn. J. Appl. Phys. 43, 6178–6183 (2004)

    ADS  Google Scholar 

  7. J. Palosaari, M. Leinonen, J. Hannu et al., Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression. J. Electroceram. 28, 214–219 (2012)

    Google Scholar 

  8. C. Mo, D. Arnold, W.C. Kinsel et al., Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting. J. Intell. Mater. Syst. Struct. 24, 828–836 (2013)

    Google Scholar 

  9. J.B. Yuan, X.B. Shan, T. Xie et al., Energy harvesting with a slotted-cymbal transducer. J. Zhejiang Univ. Sci. A 10, 1187–1190 (2009)

    Google Scholar 

  10. E. Tufekcioglu, A. Dogan, A flextensional piezo-composite structure for energy harvesting applications. Sensors Actuators, A Phys. 216, 355–363 (2014)

    Google Scholar 

  11. G. Yesner, A. Jasim, H. Wang et al., Energy harvesting and evaluation of a novel piezoelectric bridge transducer. Sensors Actuators, A Phys. 285, 348–354 (2019)

    Google Scholar 

  12. Z. Yu, Z. Chu, J. Yang et al., A magneto-mechano-electric (MME) energy harvester based on rectangular cymbal structure. Sensors Actuators, A Phys. 316, 112400 (2020)

    Google Scholar 

  13. D. Arnold, W. Kinsel, W.W. Clark et al., Exploration of new cymbal design in energy harvesting. Act. Passiv. Smart Struct. Integr. Syst. 2011(7977), 79770T (2011)

    Google Scholar 

  14. D. Haller, A. Paetzold, N. Goldin, et al., Cymbal type Piezo-Polymer-Composite actuators for active cancellation of flow instabilities on airfoils. 2011 16th Int Solid-State Sensors, Actuators Microsystems Conf TRANSDUCERS’11 (2011), pp 494–497

  15. W. Hou, Y. Zheng, W. Guo et al., Piezoelectric vibration energy harvesting for rail transit bridge with steel-spring floating slab track system. J. Clean Prod. 291, 125283 (2021)

    Google Scholar 

  16. F. Goldschmidtboeing, P. Woias, Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromech. Microeng. (2008). https://doi.org/10.1088/0960-1317/18/10/104013

    Article  Google Scholar 

  17. D. Cao, Y. Gao, W. Hu, Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments. Acta Mech. Sin. Xuebao 35, 894–911 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  18. F. Wein, M. Kaltenbacher, M. Stingl, Topology optimization of a cantilevered piezoelectric energy harvester using stress norm constraints. Struct. Multidiscip. Optim. 48, 173–185 (2013)

    MathSciNet  MATH  Google Scholar 

  19. H. Ghasemi, H.S. Park, X. Zhuang et al., Three-dimensional isogeometric analysis of flexoelectricity with MATLAB implementation. Comput. Mater. Contin. 65, 1157–1179 (2020)

    Google Scholar 

  20. H. Ghasemi, H.S. Park, N. Alajlan et al., A computational framework for design and optimization of flexoelectric materials. Int. J. Comput. Methods 17, 1–14 (2020)

    MathSciNet  MATH  Google Scholar 

  21. K.M. Hamdia, H. Ghasemi, X. Zhuang et al., Multilevel Monte Carlo method for topology optimization of flexoelectric composites with uncertain material properties. Eng. Anal. Bound Elem. 134, 412–418 (2022)

    MathSciNet  MATH  Google Scholar 

  22. M. Salavati, H. Ghasemi, T. Rabczuk, Electromechanical properties of boron nitride nanotube: atomistic bond potential and equivalent mechanical energy approach. Comput. Mater. Sci. 149, 460–465 (2018)

    Google Scholar 

  23. H.G. Yeo, S. Trolier-McKinstry, Effect of piezoelectric layer thickness and poling conditions on the performance of cantilever piezoelectric energy harvesters on Ni foils. Sensors Actuators, A Phys. 273, 90–97 (2018)

    Google Scholar 

  24. Y. Shindo, F. Narita, M. Sato, Effects of electric field and poling on the mode i energy release rate in cracked piezoelectric ceramics at cryogenic temperatures. Acta Mech. 224, 2547–2558 (2013)

    MathSciNet  MATH  Google Scholar 

  25. E.M.A. Fuentes-Fernandez, B.E. Gnade, M.A. Quevedo-Lopez et al., The effect of poling conditions on the performance of piezoelectric energy harvesters fabricated by wet chemistry. J. Mater. Chem. A 3, 9837–9842 (2015)

    Google Scholar 

  26. N. Moriwaki, T. Kobayashi, Y. Suzuki et al., Influence of bipolar pulse poling technique for piezoelectric vibration energy harvesters using Pb(Zr, Ti)O3 films on 200 mm SOI wafers. J. Phys. Conf. Ser. (2013). https://doi.org/10.1088/1742-6596/476/1/012132

    Article  Google Scholar 

  27. J. Guo, M. Nie, Q. Wang, Self-poling polyvinylidene fluoride-based piezoelectric energy harvester featuring highly oriented β-phase structured at multiple scales. ACS Sustain. Chem. Eng. 9, 499–509 (2021)

    Google Scholar 

  28. L. Qiao, G. Li, H. Tao et al., Full characterization for material constants of a promising KNN-based lead-free piezoelectric ceramic. Ceram. Int. 46, 5641–5644 (2020)

    Google Scholar 

  29. Z. Zhang, J. Xu, L. Yang, et al., The performance enhancement and temperature dependence of piezoelectric properties for Pb(Mg 1/3 Nb 2/3 )O 3 -0.30PbTiO 3 single crystal by alternating current polarization. J. Appl. Phys. 125, 0–7 (2019)

  30. R. Kiran, A. Kumar, R. Kumar et al., Poling direction driven large enhancement in piezoelectric performance. Scr. Mater. 151, 76–81 (2018)

    Google Scholar 

  31. K. Larkin, A. Hunter, A. Abdelkefi, Size-dependent modeling and performance enhancement of functionally graded piezoelectric energy harvesters. J. Nanoparticle Res. (2020). https://doi.org/10.1007/s11051-020-04897-5

    Article  Google Scholar 

  32. M.H. Malakooti, Z. Zhou, H.A. Sodano, Enhanced energy harvesting through nanowire based functionally graded interfaces. Nano Energy 52, 171–182 (2018)

    Google Scholar 

  33. J. Adhikari, A. Kumar, R. Kumar, et al. Performance enhancement of functionally graded piezoelectric tile by tailoring poling orientation. Mech. Based Des. Struct. Mach. 1–20 (2021)

  34. S. Nomura, K. Kaneta, M. Yokosuka, et al. Related content Properties of an Interconnected Porous Pb ( Zr , Ti ) O 3 Ceramic. Jpn. J. Appl. Phys.

  35. T. Zheng, H. Wu, Y. Yuan et al., The structural origin of enhanced piezoelectric performance and stability in lead free ceramics†. Energy Environ. Sci. 10, 528–537 (2017)

    Google Scholar 

  36. J.I. Roscow, R.W.C. Lewis, J. Taylor et al., Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit. Acta Mater. 128, 207–217 (2017)

    ADS  Google Scholar 

  37. D. Xu, W.L. Li, L.D. Wang et al., Large piezoelectric properties induced by doping ionic pairs in BaTiO 3 ceramics. Acta Mater. 79, 84–92 (2014)

    ADS  Google Scholar 

  38. K. Singh, S. Sharma, M. Talha et al., A 3-dimensional approach for evaluating the influence of poling orientation on piezoelectric characteristics. J. Electron. Mater. 50, 5846–5856 (2021)

    ADS  Google Scholar 

  39. J. Adhikari, R. Kumar, V Narain, et al. in Effect of Poling Orientation in Performance of Piezoelectric Materials BT - Machines, Mechanism and Robotics, ed by R. Kumar, V.S. Chauhan, M. Talha, et al. (Springer Singapore, Singapore, 2022), pp. 1721–1732

  40. J. Adhikari, R. Kumar, S.C. Jain, Modeling and parametric analysis for performance improvement in piezoelectric energy harvesting tile. Ferroelectrics 573, 201–213 (2021)

    Google Scholar 

  41. S.V. Shah, S.K. Saha, J.K. Dutt, Denavit-Hartenberg parameterization of Euler angles. J. Comput. Nonlinear Dyn. 7, 1–10 (2012)

    Google Scholar 

  42. T. Granzow, A.B. Kounga, E. Aulbach et al., Electromechanical poling of piezoelectrics. Appl Phys Lett 88, 36–39 (2006)

    Google Scholar 

  43. Y.H. Huang, Y.J. Wu, W.J. Qiu et al., Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc. 35, 1469–1476 (2015)

    Google Scholar 

  44. H. Guo, C. Ma, X. Liu et al., Electrical poling below coercive field for large piezoelectricity. Appl. Phys. Lett. 102, 1–5 (2013)

    Google Scholar 

  45. W.N.M. Jamil, M.A. Aripin, Z. Sajuri et al., Mechanical properties and microstructures of steel panels for laminated composites in armoured vehicles. Int. J. Automot. Mech. Eng. 13, 3741–3753 (2016)

    Google Scholar 

  46. S.C. Walpole, D. Prieto-Merino, P. Edwards et al., The weight of nations: An estimation of adult human biomass. BMC Public Health 12, 1 (2012)

    Google Scholar 

  47. H.M.J. McEwen, P.I. Barnett, C.J. Bell et al., The influence of design, materials and kinematics on the in vitro wear of total knee replacements. J. Biomech. 38, 357–365 (2005)

    Google Scholar 

  48. S. Sivarasu, L. Mathew, Structural responses of a novel high flexion knee (SS316-UHMWPE) used in total knee arthroplasty using finite element analysis. Biophys. Rev. Lett. 4, 289–298 (2009)

    Google Scholar 

  49. R. Zhang, W. Cao, Transformed material coefficients for single-domain 0.67Pb (Mg13 Nb23) O3–0.33 PbTiO3 single crystals under differently defined coordinate systems. Appl. Phys. Lett. 85, 6380–6382 (2004)

    ADS  Google Scholar 

  50. P. Biswas, N.A. Hoque, P. Thakur et al., Highly efficient and durable piezoelectric nanogenerator and photo-power cell based on CTAB modified montmorillonite incorporated PVDF film. ACS Sustain. Chem. Eng. 7, 4801–4813 (2019)

    Google Scholar 

  51. K.B. Kim, J.Y. Cho, J. Hamid et al., Optimized composite piezoelectric energy harvesting floor tile for smart home energy management. Energy Convers. Manag. 171, 31–37 (2018)

    Google Scholar 

  52. A. Pop-Vadean, P.P. Pop, T. Latinovic et al., Harvesting energy an sustainable power source, replace batteries for powering WSN and devices on the IoT. IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899X/200/1/012043

    Article  Google Scholar 

  53. A. Aabid, M.A. Raheman, Y.E. Ibrahim et al., A systematic review of piezoelectric materials and energy harvesters for industrial applications. Sensors 21, 1–27 (2021)

    Google Scholar 

  54. A. Mathieson, D. Deangelis. Feasibility of lead-free piezoceramic based power ultrasonic transducers. IEEE Int Ultrason Symp IUS (2014), pp. 2075–2078

  55. M. Han, H. Wang, Y. Yang et al., Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019)

    Google Scholar 

  56. S. Klusáček, J. Fialka, Z. Havránek, et al. in Measurement of temperature dependence in the piezoelectric active element of a knock sensor. INTERNOISE 2014 - 43rd Int Congr Noise Control Eng Improv World Through Noise Control (2014), pp. 1–7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Adhikari.

Ethics declarations

Conflict of interest

The authors did not receive support from any organization for the submitted work. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\(\psi_{Z} ,\psi_{X} ,\psi_{Z}\) are the rotation matrices about Z, X and Z respectively

$$\psi_{Z} = \left[ {\begin{array}{*{20}c} {\cos \eta } & {\sin \eta } & 0 \\ { - \sin \eta } & {\cos \eta } & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]$$
(A1)
$$\psi_{X} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & {\cos \kappa } & {\sin \kappa } \\ 0 & { - \sin \kappa } & {\cos \kappa } \\ \end{array} } \right]$$
(A2)
$$\psi_{Z} = \left[ {\begin{array}{*{20}c} {\cos \varphi } & {\sin \varphi } & 0 \\ { - \sin \varphi } & {\cos \varphi } & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]$$
(A3)

Substituting equations (A1A3) in Eq. (46) to get

$$\psi = \left[ {\begin{array}{*{20}c} {\cos \eta \cos \varphi - \sin \eta \cos \kappa \sin \varphi } & {\cos \eta \sin \varphi + \sin \eta \cos \kappa \cos \varphi } & {\sin \eta \sin \kappa } \\ { - \sin \eta \cos \varphi - \cos \eta \cos \kappa \sin \varphi } & { - \sin \eta \sin \varphi + \cos \eta \cos \kappa \cos \varphi } & { - \cos \eta \sin \kappa } \\ {\sin \kappa \sin \varphi } & { - \cos \varphi \sin \kappa } & {\cos \kappa } \\ \end{array} } \right]$$
(A4)

\(\chi_{Z} ,\chi_{X} ,\chi_{Z}\) are the transformation matrices for Z, X and Z respectively, given as follows:

$$\chi_{Z} = \left[ {\begin{array}{*{20}c} {\cos^{2} \eta } & {\sin^{2} \eta } & 0 & 0 & 0 & { - 2\cos \eta \sin \eta } \\ {\sin^{2} \eta } & {\cos^{2} \eta } & 0 & 0 & 0 & {2\cos \eta \sin \eta } \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & {\cos \eta } & {\sin \eta } & 0 \\ 0 & 0 & 0 & { - \sin \eta } & {\cos \eta } & 0 \\ {\cos \eta \sin \eta } & { - \cos \eta \sin \eta } & 0 & 0 & 0 & {\cos^{2} \eta - \sin^{2} \eta } \\ \end{array} } \right]$$
(A5)
$$\chi_{X} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & {\cos^{2} \kappa } & {\sin^{2} \kappa } & {2\cos \kappa \sin \kappa } & 0 & 0 \\ 0 & {\sin^{2} \kappa } & {\cos^{2} \kappa } & { - 2\cos \kappa \sin \kappa } & 0 & 0 \\ 0 & { - \cos \kappa \sin \kappa } & {\cos \kappa \sin \kappa } & {\cos^{2} \kappa - \sin^{2} \kappa } & 0 & 0 \\ 0 & 0 & 0 & 0 & {\cos \kappa } & { - \sin \eta } \\ 0 & 0 & 0 & 0 & {\sin \eta } & {\cos \kappa } \\ \end{array} } \right]$$
(A6)
$$\chi_{Z} = \left[ {\begin{array}{*{20}c} {\cos^{2} \varphi } & {\sin^{2} \varphi } & 0 & 0 & 0 & { - 2\cos \varphi \sin \varphi } \\ {\sin^{2} \varphi } & {\cos^{2} \varphi } & 0 & 0 & 0 & {2\cos \varphi \sin \varphi } \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & {\cos \varphi } & {\sin \varphi } & 0 \\ 0 & 0 & 0 & { - \sin \varphi } & {\cos \varphi } & 0 \\ {\cos \varphi \sin \varphi } & { - \cos \varphi \sin \varphi } & 0 & 0 & 0 & {\cos^{2} \varphi - \sin^{2} \varphi } \\ \end{array} } \right]$$
(A7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, J., Kumar, R. & Jain, S.C. Angular poling effect on cymbal piezoelectric structure using rhombohedral and tetragonal PMN-0.33PT for energy harvesting applications. Appl. Phys. A 128, 384 (2022). https://doi.org/10.1007/s00339-022-05512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05512-1

Keywords

Navigation