Skip to main content

Advertisement

Log in

Recent progress on piezoelectric energy harvesting: structures and materials

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

With the rapid development of advanced technology, piezoelectric energy harvesting (PEH) with the advantage of simple structure, polluted relatively free, easily minimization, and integration has been used to collect the extensive mechanical energy in our living environment holding great promise to power the self-sustainable system and portable electronics. In this paper, attempts have been made to review the progress of piezoelectric materials and devices used for energy harvesting. The review focused on three parts: structure of piezoelectric devices (cantilever, cymbal, and stacks); theoretical mode, including vibration mode (d31 and d33) and its responding theories of different devices; and piezoelectric materials, among which the electric performance of Pb(ZrTi)O3-based, lead-free-based, and composites applied in bulk/micro/nano-PEH devices were introduced in details. It is suggested that a new structure of PEH should be designed by combining advantages of cantilever, stacks, and cymbal structure. Besides, high d33 × g33 value and low ε of piezoelectric materials are required in order to generate high electric output power for bulk/micro/nano-PEH. Additionally, lead-free piezoelectric ceramics is a candidate for manufacturing PEH devices, and nano-composite materials should be developed to further improve the flexibility of piezoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Abbreviations

T c :

Curie temperature

d ij :

Piezoelectric constant

\( {d}_{33}^{eff} \) :

Effective piezoelectric constant

g ij :

Piezoelectric voltage constant

\( {g}_{33}^{eff} \) :

Effective piezoelectric voltage constant

k p :

Electromechanical coupling coefficient

Q m :

Mechanical quality factor

ε :

Dielectric constant

ε o :

Dielectric constant of vacuum

ε r :

Relative dielectric constant

E :

Electric field

T:

Temperature

S :

Active area of nano-materials

K:

Amplification coefficient for cymbal

P MAX :

Maximum output power

R OPT :

Optimal resistor

ω :

Angular frequency

l :

Length of beam

w :

Width of beam

t :

Time

t p :

Thickness of piezoelectric element

t s :

Thickness of cantilever metal substrate

t m :

Thickness of metal endcap

t h :

Height of the cavity

s :

Strain

r b :

Radius of the bottom part for the endcap cavity

r t :

Radius of the top part for the endcap cavity

r p :

Radius of the piezoelectric element for the endcap cavity

H :

Bending degree of cantilever

A :

Area of piezoelectric element

n :

Number of piezoelectric layer

R :

Resistor load

η :

Energy efficiency

V op :

Open-circuit voltage

Q :

Charge

P :

Output power

C o :

Vacuum capacitance of energy harvesting

C :

Capacitance of energy harvesting

i :

Polarization direction of piezoelectric materials

j :

Stain direction of the piezoelectric materials

AC :

Alternating current

DC :

Direct current

References

  1. Roundy S, Paul KW, Jan MR (2004) Energy scavenging for wireless sensor networks. Springer, Boston, pp 1–24

    Google Scholar 

  2. Bedekar V, Oliver J, Priya S (2010) Design and fabrication of bimorph transducer for optimal vibration energy harvesting. IEEE T Ultrason Ferr 57:1513–1523

    Article  Google Scholar 

  3. Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervas Comput 4:18–27

    Article  Google Scholar 

  4. Starner T (1996) Human-powered wearable computing. IBM Syst J 35: 618–629

    Article  Google Scholar 

  5. Beeby S (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17: 1257–1265

    Article  Google Scholar 

  6. Zhang YL, Wang TY, Zhang A, Peng ZT, Luo D, Chen R, Wang F (2016) Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency. Rev. Sci Instrum 87: 125001–1-8.

    Article  Google Scholar 

  7. Boisseau S, Despesse G, Seddik BA (2012) Electrostatic conversion for vibration energy harvesting. Physics 6044: 456–472

  8. Basset P, Galayko D, Paracha AM, Marty F, Dudka A, Bourouina T (2009) A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. J Micromech Microeng 19: 115025–1-12.

    Article  Google Scholar 

  9. Kim HS, Kim JH, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Manuf 12: 1129–1141

    Article  Google Scholar 

  10. Li WG, He S, Yu S (2010a) Improving power density of a cantilever piezoelectric power harvester through a curved L-shaped proof mass. IEEE T Ind Electron 57: 868–876.

    Article  Google Scholar 

  11. Uchino K, Takaaki I (2010) Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics 400: 305–320

    Article  CAS  Google Scholar 

  12. Battiston FM, Ramseyer JP, Lang HP, Baller MK, Gerber CH, Gimzewski JK, Meyer E, Güntherodt HJ (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sensors Actuators B Chem 77: 122–131

    Article  CAS  Google Scholar 

  13. Inman JD (2011) Piezoelectric energy harvesting. Wiley, New York, pp 1847–1850

    Google Scholar 

  14. Glynne JP, Beeby SP, White NM (2001) Towards a piezoelectric vibration powered micro-generator. IEE P-Sci Meas Tech 148: 68–72

  15. Li Y, Li W, Guo T, Yan Z, Fu X, Hu X (2009) Study on structure optimization of a piezoelectric cantilever with a proof mass for vibration powered energy harvesting system. J Vac Sci Technol B Microelectron Nanometer Struct 27:1288–1290

    Article  CAS  Google Scholar 

  16. Li WG, He S, Yu S (2010b) Improving power density of a cantilever piezoelectric power harvester through a curved L-shaped proof mass. IEEE T Ind Electron 57: 868–876

    Article  Google Scholar 

  17. Jia Y, Seshia AA (2015) Power optimization by mass tuning for MEMS piezoelectric cantilever vibration energy harvesting. J Microelectromechan S 25: 1–10

    Article  CAS  Google Scholar 

  18. Chen ZS, Yang YM, Deng GQ (2009) Analytical and experimental study on vibration energy harvesting behaviors of piezoelectric cantilevers with different geometries. Inter Conf Sust Power Gen Sup:1–6

  19. Lee CS, Joo J, Han S, Lee JH, Koh SK (2005) Poly (vinylidene fluoride) transducers with highly conducting poly (3,4-ethylenedioxythiophene) electrodes. Synth Met 152: 49–52

    Article  CAS  Google Scholar 

  20. Kaur S, Graak P, Gupta A, Chhabra P, Kumar D, Shetty A (2016) Effect of various shapes and materials on the generated power for piezoelectric energy harvesting system. AIP Conference Proceedings 1724: 020076–1-6.

  21. Sugawara Y, Onitsuka K, Yoshikawa S, Xu Q, Newnham RE, Uchino K (1992) Metal-ceramic composite actuators. J Am Ceram Soc 75: 996–998

    Article  CAS  Google Scholar 

  22. Mo C, Arnold D, Kinsel WC, Clark WW (2011) Unimorph PZT cymbal design in energy harvesting. ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems: 139–144

  23. Kim HW, Batra A, Priya S, Uchino K, Markley D, Newham RE, Hofmann HF (2004) Energy harvesting using a piezoelectric “cymbal” transducer in dynamic environment. Jpn J Appl Phys 43: 6178–6183

    Article  CAS  Google Scholar 

  24. Kim HW, Priya S, Uchino K, Newnham RE (2005) Piezoelectric energy harvesting under high pre-stressed cyclic vibrations. J Electroceram 15: 27–34

    Article  Google Scholar 

  25. Kim HW, Priya S, Uchino K (2006) Modeling of piezoelectric energy harvesting using cymbal transducers. Jpn J Appl Phys 45: 5836–5840

    Article  CAS  Google Scholar 

  26. Zhao H, Yu J, Ling J (2010) Finite element analysis of cymbal piezoelectric transducers for harvesting energy from asphalt pavement. J Ceram Soc Jpn 118: 909–915

    Article  CAS  Google Scholar 

  27. Palosaari J, Leinonen M, Hannu J, Juuti J, Iantunen H (2012) Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression. J Electroceram 28: 214–219

  28. Yuan JB, Shan XB, Xie T, Chen WS (2009) Energy harvesting with a slotted-cymbal transducer. J Zhejiang Univ A 10: 1187–1190

    Article  Google Scholar 

  29. Arnold D, Kinsel W, Clark WW, Mo C (2011) Exploration of new cymbal design in energy harvesting. P SPIE Int Soc Opt Eng 7977: 79770T-1-6.

  30. Mo C, Arnold D, Kinsel WC, Clark WW (2013) Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting. J Intell Mater Syst Struct 24: 828–836

    Article  Google Scholar 

  31. Xu C, Ren B, Di W, Liang Z, Jiao J, Li L, Li L, Zhao X, Luo H, Wang D (2012) Cantilever driving low frequency piezoelectric energy harvester using single crystal material 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3. Appl Phys Lett 101: 033502–1-4.

  32. Xu C, Ren B, Liang Z, Chen J, Zhang H (2012) Nonlinear output properties of cantilever driving low frequency piezoelectric energy harvester. Appl Phys Lett 101: 223503–1-4.

    Article  Google Scholar 

  33. Zhao H, Ling J, Yu J (2012) A comparative analysis of piezoelectric transducers for harvesting energy from asphalt pavement. J Ceram Soc Jpn 120: 317–323

    Article  CAS  Google Scholar 

  34. Moure A, Rodríguez M, Rueda SH, Gonzalo A, Rubio MF, Cuadros DU, Pérez LA, Fernández JF (2016) Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Convers Manag 112: 246–253

    Article  Google Scholar 

  35. Platt SR, Farritor S, Garvin K, Haider H (2005a) The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE/ASME T Mech 10:455–461

    Article  Google Scholar 

  36. Sun CH, Shan GQ, Zhu XC, Tao YY, Li ZR (2013) Modeling for piezoelectric stacks in series and parallel. Third International Conference on Intelligent System Design and Engineering Applications, IEEE Computer Society 138: 954–957

  37. Xu TB, Siochi EJ, Kang JH, Zuo L, Zhou WL, Tang XD, Jiang XN (2013) Energy harvesting using a PZT ceramic multilayer stack. Smart Mater Struct 22: 065015–1-15.

    Article  Google Scholar 

  38. Steven RA, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16: R1–R21

  39. Jiang XZ, Li YC, Li JC, Wang J (2012) Electromechanical modeling of a PZT disc-type energy harvester for large force vibration. Proceedings of the First ICMSMT International Conference on Mechatronic System and Measurement. Technology: 411–416

  40. Panda PK, Sahoo B, Chandraiah M, Raghavan S, Manoj B, Ramakrishna J, Raghuram K (2015) Piezoelectric energy harvesting using PZT bimorphs and multilayered stacks. J Electron Mater 44: 4349–4353

    Article  CAS  Google Scholar 

  41. Zhu D, Almusallam A, Beeby SP, John T, Harris NR (2014) A bimorph multi-layer piezoelectric vibration energy harvester. Energy Harvesting Syst 93:1–3

    Google Scholar 

  42. Platt SR, Farritor S, Haider H (2005b) On low-frequency electric power generation with PZT ceramics. IEEE/ASME T Mech 10: 240–252

    Article  Google Scholar 

  43. Lv JF, Yang K, Sun L, Chen WH, Tan YQ (2015) Finite element analysis of piezoelectric stack transducer embedded in asphalt pavement. Symposium on Piezoelectricity Acoustic Waves Device Applications 152–156.

  44. Jiang XZ, Gu XY, Wang J (2014) Energy harvesting from large force vibrations using a piezoelectric wafer-stack harvester. Int J Appl Electrom 003233: 1–12

  45. Ansari MH, Karami MA (2016) Modeling and experimental verification of a fan-folded vibration energy harvester for leadless pacemakers. J Appl Phys 119: 1540–1545

    Article  Google Scholar 

  46. Wang XF, Shi ZF, Wang JJ, Xiang HJ (2016) A stack based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads. Smart Mater Struct 25: 055005–1-8.

    Article  Google Scholar 

  47. Saadon S, Sidek O (2011) Environmental vibration based MEMS piezoelectric energy harvester. Developments in E-Systems Engineering 511–514.

  48. Sood SK (2003) Piezoelectric micro power generator (PMPG: a MEMS based energy scavenger. Dissertation, Massachusetts Institute of Technol.

  49. Zhao QL, Li ZX, He GP, Cao MS, Cao DW, Di JJ (2014) Fabrication and characterization of a high Q-factor microcantilever enhanced by lead zirconate titanate thick film. J Chin Ceram Soc 42: 65–69

  50. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312: 242–246

    Article  CAS  Google Scholar 

  51. Wang X, Song J, Liu J, Wang ZL (2007) Direct current nanogenerator driven by ultrasonic wave. Science 316: 102–105.

    Article  CAS  Google Scholar 

  52. Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26: 1131–1144

    Article  Google Scholar 

  53. Kim SG, Kanno SPI (2015) Piezoelectric MEMS for energy harvesting. J Phys Conf Ser 660: 012001–1-4.

  54. Jeon YB, Sood R, Jeong JH, Kim SG (2005) MEMS power generator with transverse mode thin film PZT. Sensor Actuat A Phys 122: 16–22

    Article  CAS  Google Scholar 

  55. Park JC, Lee DH, Park JY, Chang YS, Lee YP (2009) High performance piezoelectric MEMS energy harvester based on d 33 mode of PZT thin film on buffer-layer with PbTiO3 inter-layer. Solid State Sensors, Actuators and Microsystems Conference, Transducers 2009, Internationl IEEE: 517–520

  56. Park JC, Park JY, Lee YP (2010) Modeling and characterization of piezoelectric d 33-Mode MEMS energy harvester. J Microelectromech S 19: 1215–1222

  57. Wilkie AWK, Bryant RG, High JW, Fox RL, Hellbaum RF, Jalink A, Little BD, Mirick PH (2000) Low-cost piezocomposite actuator for structural control applications. Int Soc Optics Photonics 3991: 323–335

  58. Kim SB, Park H, Kim SH, Wikle HC, Park JH, Kim DJ (2013) Comparison of MEMS PZT cantilevers based on d 31 and d 33 modes for vibration energy harvesting. J Microelectromech S 22: 26–33

  59. Wei SH (2007) Research on characteristic and application of generating electric ceramics. Dissertation, Dalian university of technology.

  60. Wang Y, Or SW, Chan HLW, Zhao X, Luo H (2008) Giant magnetoelectric effect in mechanically clamped heterostructures of magnetostrictive alloy and piezoelectric crystal-alloy cymbal. Appl Phys Lett 93: 213504–1-3.

    Article  Google Scholar 

  61. Ochoa P, Villegas M, Pons JL, Leidinger P, Fernández JF (2005) Tunability of cymbals as piezocomposite transducers. J Electroceram 14: 221–229

  62. Jeong YH, Kim KB, Lee YJ, Cho JH, Kim BI, Paik JH, Nahm S (2012) Ferroelectric and piezoelectric properties of 0.72Pb(Zr0.47Ti0.53)O3–0.28Pb[(Zn0.45Ni0.55)1/3Nb2/3]O3 thick films for energy harvesting device application. Jpn J Appl Phys 51: 09MD04–1-4.

  63. Yuan DW, Yang Y, Hu QR, Wang YP (2014) Structures and properties of Pb(Zr0.5Ti0.5)O3- Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 ceramics for energy harvesting devices. J Am Ceram Soc 97: 3999–4004

  64. Haun MJ, Furman E, Jang SJ, Cross LE (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: phenomenology. Ferroelectrics 99: 13–25

    Article  CAS  Google Scholar 

  65. Setter N, Colla E (1993) Ferroelectric ceramics: tutorial reviews, theory, processing, and applications. Springer, Switzerland, pp. 1–85.

  66. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82: 1804–1811

    Article  CAS  Google Scholar 

  67. Cross JS, Kim SH, Wada S, Chatterjee A (2010) Characterization of Bi and Fe co-doped PZT capacitors for FeRAM. Sci Technol Adv Mat 11: 044402–1-5.

    Article  Google Scholar 

  68. Mahmud I, Ur SC, Yoon MS (2014) Effects of Fe2O3 addition on the piezoelectric and the dielectric properties of 0.99Pb(Zr0.53Ti0.47)O3–0.01Bi(Y1 − xFex)O3 ceramics for energy harvesting devices. J Korean Phys Soc 65: 133–144.

  69. Zheng MP, Hou YD, Wang S, Duan CH, Zhu MK, Yan H (2013) Identification of substitution mechanism in group VIII metal oxides doped Pb(Zn1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics with high energy density and mechanical performance. J Am Ceram Soc 96: 2486–2492

  70. Xu Q, Chen M, Chen W, Ahn BK (2008) Effect of CoO additive on structure and electrical properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics prepared by the citrate method. Acta Mater 56: 642–650

  71. Zheng MP, Hou YD, Yue YG, Chen HX, Zhu MK (2016a) The influence of A-site strontium ion in controlling the microstructure and electrical properties of P1−xSxZNZT ceramics. J Appl Phys 119: 164101–1-5.

  72. Yoon KH, Yoo H, Min SK, Lee SH (2000) Dielectric, piezoelectric and strain properties of PMW-PNN-PZT. Application of Ferroelectrics, Proceedings of International Symposium on Applications of. Ferroelectrics 1: 499–502

  73. Kang JH, Kim YJ, Yoo JY, Hwang LH (2015) Piezoelectric energy harvesting using PMW-PNN-PZT ceramics for DC-DC converter application. Ferroelectr Lett 42: 87–96

    Article  CAS  Google Scholar 

  74. Jeong YH, Lee K, Yoo JY (2010) Piezoelectric and dielectric properties of Pb(Zn1/2W1/2)O3 substituted Pb(Mn1/3Nb2/3)O3-Pb(Zr0.48Ti0.52)O3 ceramics for energy harvesting device application. Ferroelectrics 409: 85–91

  75. Wagner S, Kahraman D, Kungl H, Hoffmann MJ, Schuh C, Lubitz K, Biesenecker HM, Schmid JA (2005) Effect of temperature on grain size, phase composition, and electrical properties in the relaxor ferroelectric system Pb(Ni1/3Nb2/3)O3-Pb(Zr,Ti)O3. J Appl Phys 98: 024102–1-7.

  76. Yoon MS, Mahmud I, Ur SC (2013) Phase formation, microstructure, and piezoelectric/dielectric properties of BiYO3-doped Pb(Zr0.53Ti0.47)O3 for piezoelectric energy harvesting devices. Ceram Int 39: 8581–8588

  77. Wu J, Shi H, Zhao T, Yu Y, Dong S (2016) High temperature BiScO3-PbTiO3 piezoelectric vibration energy harvester. Adv Funct Mater 26: 7186–7194

  78. Seo IT, Cha YJ, Kang IY, Choi IH, Nahm S, Seung TH, Paik JH (2011) High energy density piezoelectric ceramics for energy harvesting devices. J Am Ceram Soc 94: 3629–3631

    Article  CAS  Google Scholar 

  79. Choi CH, Seo IT, Song D, Jang MS, Kim BY, Nahm S, Sung TH, Song HC (2013) Relation between piezoelectric properties of ceramics and output power density of energy harvester. J Eur Ceram Soc 33: 1343–1347

    Article  CAS  Google Scholar 

  80. Yurdal K, Duran C, Alkoy S, Bakan H (2004) Texture development in KSr2Nb5O15 ceramics fabricated by reactive templated grain growth. Key Eng Mater 264–268:1285–1288.

  81. Yan H, Reece MJ, Liu J, Shen Z, Kan Y, Wang P (2006) Effect of texture on dielectric properties and thermal depoling of Bi4Ti3O12 ferroelectric ceramics. J Appl Phys 100: 076103–1-3.

  82. Qin M, Gao F, Wang M, Wang L, Dong DD, Huang XX (2016) Microstructure and enhanced seebeck coefficient of textured Sr3Ti2O7 ceramics prepared by RTGG method. Ceram Int 42: 13,748–13,754.

  83. Yan YK, Cho KH, Maurya D, Kumar A, Kalinin S, Khachaturyan A, Priya S (2013) Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics. Appl Phys Lett 102: 042903–1-5.

  84. Yan YK, Marin A, Zhou Y, Priya S (2014) Enhanced vibration energy harvesting through multilayer textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics. Energy Harvesting Syst 1: 189–195

  85. Shin DJ, Kang WJ, Koh JH, Cho KH, Seo CE, Lee SK (2015) Comparative study between the pillar- and bulk-type multilayer structures for piezoelectric energy harvesters. Phys Status Solidi A 211: 1812–1817

    Article  CAS  Google Scholar 

  86. Kang WS, Koh JH (2015) (1-x)Bi0.5Na0.5TiO3-xBaTiO3 lead-free piezoelectric ceramics for energy harvesting applications. J Eur Ceram Soc 35:2057–2064

    Article  CAS  Google Scholar 

  87. Swallow LM, Luo JK, Siores E, Dodds D (2008) A piezoelectric fiber composite based energy harvesting device for potential wearable applications. Smart Mater Struct 17: 025017–1-7.

    Article  Google Scholar 

  88. Rödel J, Jo W, Seifert KTP, Anton EM, Granzow T (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177

    Article  Google Scholar 

  89. Zheng XC, Zheng GP, Lin Z, Jiang ZY (2012) Thermo electrical energy conversions in Bi0.5Na0.5TiO3-BaTiO3 thin films prepared by sol-gel method. Thin Solid Films 522: 125–128

  90. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103: 257602–1-4.

  91. Gupta MK, Kim SW, Kumar B (2016) Flexible high performance lead-free Na0.47K0.47Li0.06NbO3 microcube structure based piezoelectric energy harvester. ACS Appl Mater Interfaces 8:1766–1773

    Article  CAS  Google Scholar 

  92. Kim J, Koh JH (2015) (Na,K)NbO3-(Bi,Na)TiO3 piezoelectric ceramics for energy harvesting applications. J Eur Ceram Soc 35: 3819–3825

  93. Lee GH, Kwon YH, Koh JH (2015) Dielectric and piezoelectric properties of (1-x)(Bi,Na)TiO3-x(Bi,K)TiO3 lead-free ceramics for piezoelectric energy harvesters. Ceram Int 41:7897–7902

    Article  CAS  Google Scholar 

  94. Coondoo I, Panwar N, Maiwa H, Kholkin AL (2015) Improved piezoelectric and energy harvesting characteristics in lead-free Fe2O3 modified KNN ceramics. J Electroceram 34: 255–261

    Article  CAS  Google Scholar 

  95. Byeon S, Yoo J (2014) Dielectric, piezoelectric properties and temperature stability in modified (Na,K,Li)(Nb,Ta)O3 ceramics for piezoelectric energy harvesting device. J Electroceram 33: 202–207

    Article  CAS  Google Scholar 

  96. Kim JH, Kim JS, Han SH, Kang HW, Lee HG, Cheon CI (2016) (K,Na)NbO3 based ceramics with excess alkali oxide for piezoelectric energy harvester. Ceram Int 42: 5226–5230

    Article  CAS  Google Scholar 

  97. Zheng MP, Hou YD, Zhang LN, Zhu MK (2016b) High energy density lead-free piezoelectric ceramics for energy harvesting and derived from a sol-gel route. Eur J Inorg Chem 19: 3072–3075

    Article  CAS  Google Scholar 

  98. Won SS, Lee J, Venugopal V, Kim DJ, Lee JK, Kim DJ, Kingon AI (2016) Lead-free Mn-doped (K0.5Na0.5)NbO3 piezoelectric thin films for MEMS based vibrational energy harvester applications. Appl Phys Lett 108: 232908–1-5.

  99. Oh Y, Noh J, Yoo J, Kang J, Hwang L, Hong J (2011) Dielectric and piezoelectric properties of CeO2 added nonstoichiometric (Na0.5K0.5)0.97(Nb0.96Sb0.04)O3 ceramics for piezoelectric energy harvesting device applications. IEEE T Ultrason Ferr 58: 1860–1866

  100. Kawai H (1969) The piezoelectricity of poly(vinylidene fluoride). Jpn J Appl Phys 8: 975–976

    Article  CAS  Google Scholar 

  101. Shenck NS, Paradiso JA (2001) Energy scavenging with shoe mounted piezoelectrics. Micro IEEE 21: 30–42

    Article  Google Scholar 

  102. Rome LC, Flynn L, Goldman EM, Yoo TD (2005) Generating electricity while walking with loads. Science 309: 1725–1728

    Article  CAS  Google Scholar 

  103. Granstrom J, Feenstra J, Sodano HA, Farinholt K (2007) Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct 16: 1810–1820

    Article  CAS  Google Scholar 

  104. Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10: 2133–2137

    Article  CAS  Google Scholar 

  105. Hsiao YJ, Ji LW, Meen TH, Zhou WL, Zhao ZJ (2016) ZnO Nanorods based hybrid solar cells integrated nanogenerator for energy harvesting. J Sci Innov 6: 1–6

  106. Yue XL, Xi Y, Hu CG, He XM, Dai SG, Cheng L, Wang G (2015) Enhanced output power of nanogenerator by modifying PDMS film with lateral ZnO nanotubes and Ag nanowires. RSC Adv 5: 32566–32,571

    Article  CAS  Google Scholar 

  107. Lee S, Hinchet R, Lee Y, Yang Y, Lin ZH, Ardila G, Montès L, Mouis M, Wang ZL (2014) Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion. Adv Funct Mater 24: 1163–1168

    Article  Google Scholar 

  108. Xie SH, Li JY, Qiao Y, Liu YY, Lan LN, Zhou YC, Tan ST (2008) Multiferroic CoFe2O4- Pb(Zr0.52Ti0.48)O3 nanofibers by electrospinning. Appl Phys Lett 92: 062901–1-3.

  109. Wu WW, Bai S, Yuan MM, Qin Y, Wang ZL, Jing T (2012) Lead zirconate titanate nanowire textile nanogenerator for wearable energy harvesting and self-powered devices. ACS Nano 6: 6231–6235

    Article  CAS  Google Scholar 

  110. Xu S, Hansen BJ, Wang ZL (2010) Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun 1: 1–5

    Article  Google Scholar 

  111. Shen DN, Park JH, Noh JH, Choe SY, Kim SH, Wike HC, Kim DJ (2009) Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sensors Actuat A Phys 154: 103–108

    Article  CAS  Google Scholar 

  112. Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G (2000) Origin of the high piezoelectric response in PbZr1−xTixO3. Phys Rev Lett 84: 5423–5426

  113. Qi Y, Jafferis NT, Lyons K, Lee CM, Ahmad H, McAlpine MC (2010) Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett 10: 524–528

    Article  CAS  Google Scholar 

  114. Gao ZY, Ding Y, Lin SS, Hao Y, Wang ZL (2009) Dynamic fatigue studies of ZnO nanowires by in-situ transmission electron microscopy. Phys Status Solidi R 3: 260–262

    Article  CAS  Google Scholar 

  115. Zhao QL, He GP, Di JJ, Song WL, Hou ZL, Tan PP, Cao MS (2017) Flexible semitransparent energy harvester with high pressure sensitivity and power density based on laterally aligned PZT single crystal nanowires. ACS Appl Mater Interfaces 9:24,696–24,703

    Article  CAS  Google Scholar 

  116. He W, Qiu J, Zhuge F, Li X, Lee JH, Kim YD, Kim HK, Hwang YH (2012) Advantages of using Ti mesh type electrodes for flexible dye sensitized solar cells. Nanotechnology 23: 225602–1-6.

    Article  Google Scholar 

  117. Siddiqui S, Kim DI, Le TD, Nguyen MT, Muhammad S (2015) High performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15: 177–185

    Article  CAS  Google Scholar 

  118. Wu WW, Cheng L, Bai S, Dou W, Xu Q, Wei ZY (2013) Electrospinning lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting. J Mater Chem A 1: 7332–7338

  119. Zhou Z, Bowland CC, Malakooti MH, Tang H, Sodano HA (2016) Lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting. Nanoscale 8(9): 5098–5105

  120. Baek C, Yun JH, Wang JE, Jeong CK, Lee KJ, Park KI, Kim DK (2016) A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle polymer composite. Nanoscale 8: 17,632–17,638

    Article  CAS  Google Scholar 

  121. Zhu RJ, Jiang JY, Wang ZG, Cheng ZX, Kimura H (2016) High output power density nanogenerator based on lead-free 0.96(K0.48Na0.52)(Nb0.95Sb0.05)O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 piezoelectric nanofibers. Rsc Adv 6: 66,451–66,456.

  122. Jing Y, Jeong YG (2016) High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl Mater Interfaces 8: 15700–15,709

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51672219, 51702259), the International Cooperation Foundation of Shaanxi Province (2017KW-025), the Basic Research Program of Shenzhen (No. JCYJ20170306155944271), the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (No.137-QP-2015), and the “111” Project (No. B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Xu, J., Liu, J. et al. Recent progress on piezoelectric energy harvesting: structures and materials. Adv Compos Hybrid Mater 1, 478–505 (2018). https://doi.org/10.1007/s42114-018-0046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0046-1

Keywords

Navigation