Skip to main content

Advertisement

Log in

Effect of porous auxetic structures on low-frequency piezoelectric energy harvesting systems: a finite element study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work investigates the effect of porous auxetic structure on low-frequency piezoelectric energy harvesting (bimorph cantilever) systems. Two auxetic-based systems are proposed to apply transverse loads: full length auxetic (AS1) and patch auxetic (AS2) piezoelectric energy harvesting system. The objective is to achieve the optimum design solutions for auxetic systems that result in a higher output power than a conventional energy harvesting system (CD) when operated at low resonance frequencies (20–100 Hz). In the present work, Pb(ZrxTi1-x)O3 (PZT-5H), 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3(BZT-BCT) and polyvinylidene fluoride (PVDF) piezoelectric materials are considered, while an auxetic sheet made up of brass is used as a substrate for energy harvesting. The results show that the PVDF is a suitable piezoelectric material for AS1 system to improve the power. The maximum power of 211 µW is achieved at optimum auxetic sheet thickness. It is also observed that AS1 can improve power as high as two times compared to CD operating at particular sheet thicknesses. However, AS2 should be used for ceramic-based materials and enhance power by 30.8% and 24.3% at optimum sheet thicknesses when PZT-5H and BZT-BCT are used as piezoelectric material. It is recommended that instead of focusing solely on maximizing power, the maximum stress generated in the piezoelectric layers should be considered as well to look at its practical feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. P. Eghbali, D. Younesian, S. Farhangdoust, Int. J. Energy Res. 44, 1179 (2020). https://doi.org/10.1002/er.5010

    Article  Google Scholar 

  2. P. Eghbali, D. Younesian, A. Moayedizadeh, M. Ranjbar, Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-73425-1

    Article  Google Scholar 

  3. Y. Umino, T. Tsukamoto, S. Shiomi, K. Yamada, and T. Suzuki, in Development of vibration energy harvester with 2D mechanical metamaterial structure, 2018 (IOP Publishing), p. 012103, doi:https://doi.org/10.1088/1742-6596/1052/1/012103.

  4. L. Wang, L. Zhao, Z. Jiang, G. Luo, P. Yang, X. Han, X. Li, R. Maeda, AIP Adv. 9, 095067 (2019). https://doi.org/10.1063/1.5119328

    Article  ADS  Google Scholar 

  5. A. Toprak, O. Tigli, Appl. Phys. Rev. 1, 031104 (2014). https://doi.org/10.1063/1.4896166

    Article  ADS  Google Scholar 

  6. C. Bowen, H. Kim, P. Weaver, S. Dunn, Energy Environ. Sci. 7, 25 (2014). https://doi.org/10.1039/C3EE42454E

    Article  Google Scholar 

  7. Q. Zhang, Y. Wang, E.S. Kim, J. Appl. Phys. 115, 064908 (2014). https://doi.org/10.1063/1.4865792

    Article  ADS  Google Scholar 

  8. Y. Kuang, Z. Yang, M. Zhu, Smart Mater. Struct. 25, 085029 (2016). https://doi.org/10.1088/0964-1726/25/8/085029

    Article  ADS  Google Scholar 

  9. M. Amin Karami and D. J. Inman, Appl. Phys. Lett. 100, 042901 (2012), doi:https://doi.org/10.1063/1.3679102.

  10. J. Cao, W. Wang, S. Zhou, D.J. Inman, J. Lin, Appl. Phys. Lett. 107, 143904 (2015). https://doi.org/10.1063/1.4932947

    Article  ADS  Google Scholar 

  11. G. Zhu, R. Yang, S. Wang, Z.L. Wang, Nano Lett. 10, 3151 (2010). https://doi.org/10.1021/nl101973h

    Article  ADS  Google Scholar 

  12. D. Xue, Y. Zhou, H. Bao, J. Gao, C. Zhou, X. Ren, Appl. Phys. Lett. 99, 122901 (2011). https://doi.org/10.1063/1.3640214

    Article  ADS  Google Scholar 

  13. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. RossettiJr., and J. Rödel, Appl. Phys. Rev. 4, 041305 (2017), doi:https://doi.org/10.1063/1.4990046.

  14. W.-S. Jung, M. Lee, S.-H. Baek, I.K. Jung, S.-J. Yoon, C.-Y. Kang, Nano Energy 22, 514 (2016). https://doi.org/10.1016/j.nanoen.2016.02.043

    Article  Google Scholar 

  15. R. Sriramdas, S. Chiplunkar, R. M. Cuduvally, and R. Pratap, IEEE Sens. J. 15, 3338 (2015), doi:https://doi.org/10.1109/JSEN.2014.2387882

  16. Y.-F. Su, R.R. Kotian, N. Lu, Compos. B. Eng. 153, 124 (2018). https://doi.org/10.1016/j.compositesb.2018.07.018

    Article  Google Scholar 

  17. M.R. Hasan, S.-H. Baek, K.S. Seong, J.H. Kim, I.-K. Park, A.C.S. Appl, Mater. Interfaces 7, 5768 (2015). https://doi.org/10.1021/am5085379

    Article  Google Scholar 

  18. A. Berksoy-Yavuz, U. Savacı, S. Turan, S. Alkoy, E. Mensur-Alkoy, J. Mater. Sci. Mater. Electron. 31, 9650 (2020). https://doi.org/10.1007/s10854-020-03510-8

    Article  Google Scholar 

  19. T. Fey, F. Eichhorn, G. Han, K. Ebert, M. Wegener, A. Roosen, K.-I. Kakimoto, P. Greil, Smart Mater. Struct. 25, 015017 (2016). https://doi.org/10.1088/0964-1726/25/1/015017

    Article  ADS  Google Scholar 

  20. M. Xie, Y. Zhang, M.J. Kraśny, C. Bowen, H. Khanbareh, N. Gathercole, Energy Environ. Sci. 11, 2919 (2018). https://doi.org/10.1039/C8EE01551A

    Article  Google Scholar 

  21. R. Kiran, A. Kumar, R. Kumar, R. Vaish, Int. J. Appl. Ceram. Technol. 17, 1328 (2020). https://doi.org/10.1111/ijac.13370

    Article  Google Scholar 

  22. R. Kiran, A. Kumar, R. Kumar, R. Vaish, Scr. Mater. 151, 76 (2018). https://doi.org/10.1016/j.scriptamat.2018.03.029

    Article  Google Scholar 

  23. M.L. De Bellis, A. Bacigalupo, Smart Mater. Struct. 26, 085037 (2017). https://doi.org/10.1088/1361-665X/aa7772

    Article  ADS  Google Scholar 

  24. W. J. Ferguson, Y. Kuang, K. E. Evans, C. W. Smith, and M. Zhu, Sens. Actuators, A 282, 90 (2018), doi:https://doi.org/10.1016/j.sna.2018.09.019.

  25. M. Lei, W. Hong, Z. Zhao, C. Hamel, M. Chen, H. Lu, H.J. Qi, A.C.S. Appl, Mater. Interfaces 11, 22768 (2019). https://doi.org/10.1021/acsami.9b06081

    Article  Google Scholar 

  26. Q. Li, Z. He, E. Li, Acta Mech. 230, 2905 (2019). https://doi.org/10.1007/s00707-019-02437-4

    Article  Google Scholar 

  27. P. Eghbali, D. Younesian, S. Farhangdoust, Appl. Energy 270, 115217 (2020). https://doi.org/10.1016/j.apenergy.2020.115217

    Article  Google Scholar 

  28. S. Farhangdoust, in Auxetic cantilever beam energy harvester, 2020 (International Society for Optics and Photonics), p. 113820V, doi:https://doi.org/10.1117/12.2559327

  29. Q. Li, Y. Kuang, M. Zhu, AIP Adv. 7, 015104 (2017). https://doi.org/10.1063/1.4974310

    Article  ADS  Google Scholar 

  30. K.E. Evans, M. Nkansah, I. Hutchinson, S. Rogers, Nature 353, 124 (1991). https://doi.org/10.1038/353124a0

    Article  ADS  Google Scholar 

  31. Y. Jiang, Y. Li, Sci. Rep. 8, 1 (2018). https://doi.org/10.1038/s41598-018-20795-2

    Article  ADS  Google Scholar 

  32. W. Zhang, S. Zhao, R. Sun, F. Scarpa, J. Wang, Polymers 11, 1132 (2019). https://doi.org/10.3390/polym11071132

    Article  Google Scholar 

  33. E. Kim, J. Yang, H. Hwang, C.W. Shul, Int. J. Impact Eng. 101, 24 (2017). https://doi.org/10.1016/j.ijimpeng.2016.09.006

    Article  Google Scholar 

  34. S.L. Zhang, Y.C. Lai, X. He, R. Liu, Y. Zi, Z.L. Wang, Adv. Funct. Mater. 27, 1606695 (2017). https://doi.org/10.1002/adfm.201606695

    Article  Google Scholar 

  35. H. Kalathur, R. Lakes, J. Intell. Mater. Syst. Struct. 27, 2568 (2016). https://doi.org/10.1177/1045389X15624802

    Article  Google Scholar 

  36. V.Y. Topolov, C. Bowen, Mater. Lett. 142, 265 (2015). https://doi.org/10.1016/j.matlet.2014.12.018

    Article  Google Scholar 

  37. H. Ghasemi, H.S. Park, T. Rabczuk, Comput. Methods Appl. Mech. Eng. 313, 239 (2017). https://doi.org/10.1016/j.cma.2016.09.029

    Article  ADS  Google Scholar 

  38. H. Ghasemi, H.S. Park, T. Rabczuk, Comput. Methods Appl. Mech. Eng. 332, 47 (2018). https://doi.org/10.1016/j.cma.2017.12.005

    Article  ADS  Google Scholar 

  39. P. Gaudenzi, Comput. Struct. 65, 157 (1997). https://doi.org/10.1016/S0045-7949%2896%2900375-6

    Article  Google Scholar 

  40. H. Ghasemi, H.S. Park, N. Alajlan, T. Rabczuk, Int. J. Comput. Methods 17, 1850097 (2020). https://doi.org/10.1142/S0219876218500974

    Article  MathSciNet  Google Scholar 

  41. H. Ghasemi, H.S. Park, X. Zhuang, T. Rabczuk, Comput. Mater. Contin. 65, 1157 (2020). https://doi.org/10.32604/cmc.2020.08358

    Article  Google Scholar 

  42. S. Nanthakumar, T. Lahmer, X. Zhuang, G. Zi, T. Rabczuk, Inverse Probl. Sci. Eng. 24, 153 (2016). https://doi.org/10.1080/17415977.2015.1017485

    Article  MathSciNet  Google Scholar 

  43. D. Grzybek, W. Sikora, D. Kata, and P. Micek, in Comparative numerical analysis of a piezoelectric harvester based on non-auxetic and auxetic material, 2020 (IEEE), p. 1, doi:https://doi.org/10.1109/ICCC49264.2020.9257264.

  44. A. Sharma, O. Olszewski, J. Torres, A. Mathewson, R. Houlihan, Procedia Eng. 120, 645 (2015). https://doi.org/10.1016/j.proeng.2015.08.695

    Article  Google Scholar 

  45. J. Sirohi, in Ferroelectric Materials for Energy Harvesting and Storage (Elsevier, 2021), p. 187, doi:https://doi.org/10.1016/B978-0-08-102802-5.00006-6.

  46. J.W. Sohn, J. Jeon, S.-B. Choi, Adv. Mech. Eng. 5, 420345 (2013). https://doi.org/10.1155/2013/420345

    Article  Google Scholar 

  47. G. Han, S. Lee, H.-S. Ahn, Tribol. Lubr. Technol. 30, 218 (2014). https://doi.org/10.9725/kstle.2014.30.4.218

    Article  Google Scholar 

  48. M. Taylor, L. Francesconi, M. Gerendás, A. Shanian, C. Carson, K. Bertoldi, Adv. Mater. 26, 2365 (2014). https://doi.org/10.1002/adma.201304464

    Article  Google Scholar 

  49. K.M. Hamdia, H. Ghasemi, X. Zhuang, N. Alajlan, T. Rabczuk, Comput. Methods Appl. Mech. Eng. 337, 95 (2018). https://doi.org/10.1016/j.cma.2018.03.016

    Article  ADS  Google Scholar 

  50. S. Priya and D. J. Inman, Energy harvesting technologies, Vol. 21 (Springer, Boston, MA, 2009), doi:https://doi.org/10.1007/978-0-387-76464-1.

  51. A. Kumar, A. Sharma, R. Kumar, R. Vaish, V.S. Chauhan, J. Asian Ceram. Soc. 2, 138 (2014). https://doi.org/10.1016/j.jascer.2014.02.001

    Article  Google Scholar 

  52. J. Kim, V.V. Varadan, V.K. Varadan, Int. J. Numer. Methods Eng. 40, 817 (1997). https://doi.org/10.1002/(SICI)1097-0207(19970315)40:5%3c817::AID-NME90%3e3.0.CO;2-B

    Article  Google Scholar 

  53. Q. Zhao, Y. Liu, L. Wang, H. Yang, D. Cao, Int. J. Pavement Res. Technol. 11, 153 (2018). https://doi.org/10.1016/j.ijprt.2017.08.001

    Article  Google Scholar 

  54. Y. Kuang and M. Zhu, Sens. Actuators, A 263, 510 (2017), doi:https://doi.org/10.1016/j.sna.2017.07.009.

  55. S. Patel, R. Vaish, J. Intell. Mater. Syst. Struct. 26, 321 (2015). https://doi.org/10.1177/1045389X14525491

    Article  Google Scholar 

  56. E. Varadrajan and M. Bhanusri, in Design and simulation of unimorph piezoelectric energy harvesting system, 2013, p. 17.

Download references

Acknowledgements

S. Patel thanks Science and Engineering Research Board (SERB) for financial support in the frame of the Start-up Research Grant no. SRG/2020/000188. Arnab also thanks SERB for financial support for internship/scholarship.

Funding

The research is funded by Science and Engineering Research Board, Grant No. SRG/2020/000188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayan Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy Chowdhury, A., Saurabh, N., Kiran, R. et al. Effect of porous auxetic structures on low-frequency piezoelectric energy harvesting systems: a finite element study. Appl. Phys. A 128, 62 (2022). https://doi.org/10.1007/s00339-021-05199-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05199-w

Keywords

Navigation