Skip to main content

Advertisement

Log in

Synthesis and characterization of wearable cuprous oxide/conductive fabric enabled non-enzymatic electrochemical sensing of glucose

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract  

Electrochemical deposition was effectively used to generate cuprous oxide nanostructure on conductive fabric (CF). Scanning electron microscope, photoluminescence, X-ray photoelectron spectroscopy (XPS), and X-ray diffractometer were used to analyze the samples’ structures and characteristics. As a non-enzymatic glucose sensor, cuprous oxide deposited electrochemically on wearable CF was utilized; CV and DPV were used to examine the sensor’s electrocatalytic reaction to glucose. The results demonstrated that cuprous oxide on CF was synthesized with greater purity, a clean morphological structure, and consistent crystallite size. Having a sword-shaped dendrite, the cuprous oxide-coated CF sensor responds well to glucose. Additionally, it has high stability, a good linear connection between 0 and 500 µM in the concentration of glucose range, a correlation coefficient (R2) value of 0.985, and detection limits of 97.08 µM. Non-enzymatic glucose sensor electrodes have been employed in this study to examine the electrochemical performance of a Cu2O coated on a conductive fabric (CF). Consequently, it has the potential to be used in sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings will be available on the reasonable request.

References   

  1. W.H. Organization (2016) Global report on diabetes. https://www.who.int/publications/i/item/9789241565257

  2. Rodríguez-Rodríguez N, Martínez-Jiménez I, García-Ojalvo A, Mendoza-Mari Y, Guillén-Nieto G, Armstrong DG, Berlanga-Acosta J (2022) Wound chronicity, impaired immunity and infection in diabetic patients. MEDICC Rev 24:44–58

    Article  PubMed  Google Scholar 

  3. Singh A, Sharma A, Ahmed A, Sundramoorthy AK, Furukawa H, Arya S, Khosla A (2021) Recent advances in electrochemical biosensors: applications, challenges, and future scope. Biosensors 11(9):336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tripathi S, Jindal S, Chawla M, Gupta A, Jha S, Phadke U, Lathia T (2022) The implication of time-in-range for the management of diabetes in india: a narrative review. Clinical Diabetology 11(3):192–199

    Article  CAS  Google Scholar 

  5. New RR, Ramanujam S, Chaudhari V, Bogus M, Travers GN, Namjoshi G (2023) Safety and efficacy of an oral insulin (Capsulin) in patients with early-stage type 2 diabetes: a dose-ranging phase 2b study. Diabetes, Obesity and Metabolism 25(4):953–960

    Article  CAS  PubMed  Google Scholar 

  6. Singh A, Sharma A, Arya S (2022) Human sweat-based wearable glucose sensor on cotton fabric for real-time monitoring. J Anal Sci Technol 13(1):1–13

    Article  Google Scholar 

  7. Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien DH (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587):509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T, Choi SH (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11(6):566–572

    Article  PubMed  Google Scholar 

  9. Veiseh O, Langer R (2015) A smart insulin patch. Nature 524(7563):39–40

    Article  CAS  PubMed  Google Scholar 

  10. Kumar RS, Govindan K, Ramakrishnan S, Kim AR, Kim JS, Yoo DJ (2021) Fe3O4 nanorods decorated on polypyrrole/reduced graphene oxide for electrochemical detection of dopamine and photocatalytic degradation of acetaminophen. Appl Surf Sci 556:149765

    Article  Google Scholar 

  11. Babu KJ, Yoo DJ, Kim AR (2015) Binder free and free-standing electrospun membrane architecture for sensitive and selective non-enzymatic glucose sensors. RSC Adv 5(52):41457–41467

    Article  Google Scholar 

  12. Luo Z, Zhang L, Zeng R, Su L, Tang D (2018) Near-infrared light-excited core–core–shell UCNP@Au@CdS upconversion nanospheres for ultrasensitive photoelectrochemical enzyme immunoassay. Anal Chem 90(15):9568–9575

    Article  CAS  PubMed  Google Scholar 

  13. Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. TrAC, Trends Anal Chem 89:163–180

    Article  CAS  Google Scholar 

  14. Zhao S, Tao W, He Q, Zhao H, Yang H (2017) Glucose solution determination based on liquid photoacoustic resonance. Appl Opt 56(2):193–199

    Article  CAS  PubMed  Google Scholar 

  15. Ramon-Marquez T, Sesay AM, Panjan P, Medina-Castillo AL, Fernandez-Gutierrez A, Fernandez-Sanchez JF (2017) A microfluidic device with integrated coaxial nanofibre membranes for optical determination of glucose. Sensors and Actuators B: Chemical 250:156–161

    Article  CAS  Google Scholar 

  16. Del Barrio M, Cases R, Cebolla V, Hirsch T, de Marcos S, Wilhelm S, Galbán J (2016) A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase. Talanta 160:586–591

    Article  PubMed  Google Scholar 

  17. Stuart DA, Yuen JM, Shah N, Lyandres O, Yonzon CR, Glucksberg MR, Walsh JT, Van Duyne RP (2006) In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal Chem 78(20):7211–7215

    Article  CAS  PubMed  Google Scholar 

  18. Hu Y, Cheng H, Zhao X, Wu J, Muhammad F, Lin S, He J, Zhou L, Zhang C, Deng Y, Wang, (2017) Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11(6):5558–5566

    Article  CAS  PubMed  Google Scholar 

  19. Ahmad R, Hahn YB (2018) Nonenzymatic flexible field-effect transistor-based glucose sensor fabricated using NiO quantum dots modified ZnO nanorods. J Colloid Interface Sci 512:21–28

    Article  PubMed  Google Scholar 

  20. Gabunada JC, Vinothkannan M, Kim DH, Kim AR, Yoo DJ (2019) Magnetite nanorods stabilized by polyaniline/reduced graphene oxide as a sensing platform for selective and sensitive non-enzymatic hydrogen peroxide detection. Electroanalysis 31(8):1507–1516

    Article  Google Scholar 

  21. Meng T, Shang N, Zhao J, Su M, Wang C, Zhang Y (2021) Facile one-pot synthesis of Co coordination polymer spheres doped macroporous carbon and its application for electrocatalytic oxidation of glucose. J Colloid Interface Sci 589:135–146

    Article  CAS  PubMed  Google Scholar 

  22. Singh A, Sharma A, Ahmed A, Arya S (2022) Highly selective and efficient electrochemical sensing of ascorbic acid via CuO/rGO nanocomposites deposited on conductive fabric. Appl Phys A 128(4):1–12

    Article  Google Scholar 

  23. Meng T, Jia H, Ye H, Zeng T, Yang X, Wang H, Zhang Y (2020) Facile preparation of CoMoO4 nanorods at macroporous carbon hybrid electrocatalyst for non-enzymatic glucose detection. J Colloid Interface Sci 560:1–10

    Article  CAS  PubMed  Google Scholar 

  24. Vasuki K, Siva G, Balasubramani A, Pannipara M, Al-Sehemi AG, Xia Y, Fang R, Yoo DJ, Kumar TR, Ramachandran R (2019) Surfactant and binder free hierarchical NCNPs@ CuO nanostructures on ITO for the cost effective enzyme-free glucose sensor applications. Appl Phys A 125(6):1–12

    Article  CAS  Google Scholar 

  25. Cho SJ, Noh HB, Won MS, Cho CH, Kim KB, Shim YB (2018) A selective glucose sensor based on direct oxidation on a bimetal catalyst with a molecular imprinted polymer. Biosens Bioelectron 99:471–478

    Article  CAS  PubMed  Google Scholar 

  26. Diouf A, Bouchikhi B, El Bari N (2019) A nonenzymatic electrochemical glucose sensor based on molecularly imprinted polymer and its application in measuring saliva glucose. Mater Sci Eng, C 98:1196–1209

    Article  CAS  Google Scholar 

  27. Pearton SJ, Ren F (2013) Wide bandgap semiconductor one-dimensional nanostructures for applications in nanoelectronics and nanosensors. Nanomater Nanotechnol 3(Godište 2013):3–1

    Google Scholar 

  28. Zhou F, Jing W, Wu Q, Gao W, Jiang Z, Shi J, Cui Q (2016) Effects of the surface morphologies of ZnO nanotube arrays on the performance of amperometric glucose sensors. Mater Sci Semicond Process 56:137–144

    Article  CAS  Google Scholar 

  29. Johari A, Rana V, Bhatnagar MC (2011) Synthesis, characterization and ethanol sensing properties of tin oxide nanostructures. Nanomater and Nanotechnol 1:18

    Article  Google Scholar 

  30. Nia M, Meng WP, Lorestani F, Mahmoudian MR, Alias Y (2015) Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor. Sensors Actuators B: Chemical 209:100–108

    Article  Google Scholar 

  31. Wang Y, Fan D, Wu D, Zhang Y, Ma H, Du B, Wei Q (2016) Simple synthesis of silver nanoparticles functionalized cuprous oxide nanowires nanocomposites and its application in electrochemical immunosensor. Sens Actuators, B Chem 236:241–248

    Article  CAS  Google Scholar 

  32. Wang Y, Liu L, Cai Y, Chen J, Yao J (2013) Preparation and photocatalytic activity of cuprous oxide/carbon nanofibres composite films. Appl Surf Sci 270:245–251

    Article  CAS  Google Scholar 

  33. Tsai CH, Chen CH, Fei: H. and Hsu, Y.K., (2015) Novel semiconductor-liquid heterojunction solar cells based on cuprous oxide and iodine electrolyte. Electrochim Acta 167:112–118

    Article  CAS  Google Scholar 

  34. Motoyoshi R, Oku T, Suzuki A, Kikuchi K, Kikuchi S, Jeyadevan B, Cuya J (2010) Fabrication and characterization of cuprous oxide: fullerene solar cells. Synth Met 160(11–12):1219–1222

    Article  CAS  Google Scholar 

  35. Zhao G, Zhang L, Wang B, Sun K (2015) Cuprous oxide as cathode catalysts of lithium oxygen batteries. Electrochim Acta 184:117–123

    Article  Google Scholar 

  36. Sharma A, Singh A, Gupta V, Arya S (2022) Advancements and future prospects of wearable sensing technology for healthcare applications. Sensor Diagn 1(3):387–404

    Article  Google Scholar 

  37. Liu S, Kang M, Yan F, Peng D, Yang Y, He L, Wang M, Fang S, Zhang Z (2015) Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg (II) detection. Electrochim Acta 160:64–73

    Article  CAS  Google Scholar 

  38. Li H, Li J, Chen D, Qiu Y, Wang W (2015) Dual-functional cubic cuprous oxide for non-enzymatic and oxygen-sensitive photoelectrochemical sensing of glucose. Sens Actuators, B Chem 220:441–447

    Article  CAS  Google Scholar 

  39. Yu X, Huang L, Wei Y, Zhang J, Zhao Z, Dai W, Yao B (2015) Controllable preparation, characterization and performance of Cu2O thin film and photocatalytic degradation of methylene blue using response surface methodology. Mater Res Bull 64:410–417

    Article  CAS  Google Scholar 

  40. Pagare K, Torane AP (2016) Band gap varied cuprous oxide (Cu2O) thin films as a tool for glucose sensing. Microchimica Acta 183(11):2983–2989

    Article  CAS  Google Scholar 

  41. An S, Shang N, Chen B, Kang Y, Su M, Wang C, Zhang Y (2021) Co-Ni layered double hydroxides wrapped on leaf-shaped copper oxide hybrids for non-enzymatic detection of glucose. J Colloid Interface Sci 592:205–214

    Article  CAS  PubMed  Google Scholar 

  42. Jia H, Shang N, Feng Y, Ye H, Zhao J, Wang H, Wang C, Zhang Y (2021) Facile preparation of Ni nanoparticle embedded on mesoporous carbon nanorods for non-enzymatic glucose detection. J Colloid Interface Sci 583:310–320

    Article  CAS  PubMed  Google Scholar 

  43. Franco FF, Hogg RA, Manjakkal L (2022) Cu2o-based electrochemical biosensor for non-invasive and portable glucose detection. Biosensors 12(3):174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pu F, Miao H, Lu W, Zhang X, Yang Z, Kong C (2022) High-performance non-enzymatic glucose sensor based on flower-like Cu2O-Cu-Au ternary nanocomposites. Appl Surf Sci 581:152389

    Article  CAS  Google Scholar 

  45. Leopold S, Herranen M, Carlsson JO, Nyholm L (2003) In situ pH measurement of the self-oscillating Cu (II)–lactate system using an electropolymerised polyaniline film as a micro pH sensor. J Electroanal Chem 547(1):45–52

    Article  CAS  Google Scholar 

  46. Yu X, Huang L, Wei Y, Yang Q, Liu H, Yao B (2015) Preparation and performance of Cu2O/TiO2 nano-thin film for photocatalytic degradation of methylene blue. Mater Res Innovations 19(6):441–448

    Article  Google Scholar 

  47. Zhai Y, Fan H, Li Q, Yan W (2012) Morphology evolutions and optical properties of Cu2O films by an electrochemical deposition on flexible substrate. Appl Surf Sci 258(7):3232–3236

    Article  CAS  Google Scholar 

  48. Ahirrao B, Gosavi SR, Patil DR, Shinde MS, Patil RS (2011) Photoluminescence properties of modified chemical bath deposited copper oxide thin film. Archives Appl Sci Res 3(2):288–291

    CAS  Google Scholar 

  49. Muthukumar N, Thilagavathi G (2012) Development and characterization of electrically conductive polyaniline coated fabrics. Indian Journal of Chemical Technology 19(6):434–441

    CAS  Google Scholar 

  50. Shkir M, Ganesh V, AlFaify S, Yahia IS (2017) Structural, linear and third order nonlinear optical properties of drop casting deposited high quality nanocrystalline phenol red thin films. J Mater Sci: Mater Electron 28(14):10573–10581

    CAS  Google Scholar 

  51. Singh A, Arya S, Khanuja M, Hafiz AK, Datt R, Gupta V, Khosla A (2022) Eu doped NaYF4@Er:TiO2 nanoparticles for tunable ultraviolet light based anti-counterfeiting applications. Microsyst Technolo 28:295–304

  52. Mariappan R, Ragavendar M, Ponnuswamy V (2011) Growth and characterization of chemical bath deposited Cd1−xZnxS thin films. J Alloy Compd 509(27):7337–7343

    Article  CAS  Google Scholar 

  53. Shkir M, Yahia IS, Ganesh V, Algarni H, AlFaify S (2016) Facile hydrothermal-assisted synthesis of Gd3+ doped PbI2 nanostructures and their characterization. Mater Lett 176:135–138

    Article  CAS  Google Scholar 

  54. Huang MC, Wang T, Chang WS, Lin JC, Wu CC, Chen IC, Peng KC, Lee SW (2014) Temperature dependence on p-Cu2O thin film electrochemically deposited onto copper substrate. Appl Surf Sci 301:369–377

    Article  CAS  Google Scholar 

  55. Jiang X, Lin Q, Zhang M, Song X, Sun Z (2015) Effect of temperature and additive on the structural, morphological and optical properties of Cu2O thin films. Optik 126(24):5544–5547

    Article  CAS  Google Scholar 

  56. Shoeib MA, Abdelsalam OE, Khafagi MG, Hammam RE (2012) Synthesis of Cu2O nanocrystallites and their adsorption and photocatalysis behavior. Adv Powder Technol 23(3):298–304

    Article  CAS  Google Scholar 

  57. Prakash I, Muralidharan: N. and Nallamuthu, M., (2007) Venkateswarlu and Satyanarayana N., “Nanocrystallite size cuprous oxide: characterization of copper nanopowders after natural aging.” Mater Res Bull 42:1619–1624

    Article  CAS  Google Scholar 

  58. Yang H, Ouyang J, Tang A, Xiao Y, Li X, Dong X, Yu Y (2006) Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles. Mater Res Bull 41(7):1310–1318

    Article  CAS  Google Scholar 

  59. Ito T, Kawashima T, Yamaguchi H, Masumi T, Adachi S (1998) Optical properties of Cu2O studied by spectroscopic ellipsometry. J Phys Soc Jpn 67(6):2125–2131

    Article  CAS  Google Scholar 

  60. Pagare K, Torane AP (2017) Electrodeposition and characterization of pH transformed Cu2O thin films for electrochemical sensor. J Mater Sci Mater Electron 28:1386–1392

    Article  CAS  Google Scholar 

  61. Kalubowila KDRN, Jayathileka KMDC, Kumara LSR, Ohara K, Kohara S, Sakata O, Gunewardene MS, Jayasundara JMDR, Dissanayake DP, Jayanetti JKDS (2019) Effect of bath pH on electronic and morphological properties of electrodeposited Cu2O thin films. J Electrochem Soc 166(4):D113

    Article  CAS  Google Scholar 

  62. Hu F, Zou Y, Wang L, Wen Y, Xiong Y (2016) Photostable Cu2O photoelectrodes fabricated by facile Zn-doping electrodeposition. Int J Hydrog Energ 41(34):15172–15180

    Article  CAS  Google Scholar 

  63. Gu YE, Su X, Du Y, Wang C (2010) Preparation of flower-like Cu2O nanoparticles by pulse electrodeposition and their electrocatalytic application. Appl Surf Sci 256(20):5862–5866

    Article  CAS  Google Scholar 

  64. Van der Laan G, Westra C, Haas C, Sawatzky GA (1981) Satellite structure in photoelectron and Auger spectra of copper dihalides. Phys Rev B 23(9):4369

    Article  Google Scholar 

  65. Alehashem S, Chambers F, Strojek JW, Swain GM, Ramesham R (1995) Cyclic voltammetric studies of charge transfer reactions at highly boron-doped polycrystalline diamond thin-film electrodes. Anal Chem 67(17):2812–2821

    Article  CAS  Google Scholar 

  66. Liang B, Fang L, Yang G, Hu Y, Guo X, Ye X (2013) Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene. Biosens Bioelectron 43:131–136

    Article  CAS  PubMed  Google Scholar 

  67. Sharma A, Arya S, Chauhan D, Solanki R, Khajuria S, Khosla A (2020) Synthesis of Au–SnO2 nanoparticles for electrochemical determination of vitamin B12. Journal of Materials Research and Technology 9(6):14321–14337

    Article  CAS  Google Scholar 

  68. Espro C, Marini S, Giusi D, Ampelli C, Neri G (2020) Non-enzymatic screen printed sensor based on Cu2O nanocubes for glucose determination in bio-fermentation processes. J Electroanal Chem 873:114354

    Article  CAS  Google Scholar 

  69. Sun S, Shi N, Liao X, Zhang B, Yin G, Huang Z, Chen X, Pu X (2020) Facile synthesis of CuO/Ni(OH)2 on carbon cloth for non-enzymatic glucose sensing. Appl Surf Sci 529:147067

    Article  CAS  Google Scholar 

  70. Gao Y, Yang F, Yu Q, Fan R, Yang M, Rao S, Lan Q, Yang Z, Yang Z (2019) Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Microchim Acta 186:1–9

    Article  Google Scholar 

  71. Viswanathan P, Park J, Kang DK, Hong JD (2019) Polydopamine-wrapped Cu/Cu (II) nano-heterostructures: an efficient electrocatalyst for non-enzymatic glucose detection. Colloids Surf A: Physicochem Eng Asp 580:123689

    Article  CAS  Google Scholar 

  72. Yang P, Wang X, Ge CY, Fu X, Liu XY, Chai H, Guo X, Yao HC, Zhang YX, Chen K (2019) Fabrication of CuO nanosheets-built microtubes via Kirkendall effect for non-enzymatic glucose sensor. Appl Surf Sci 494:484–491

    Article  CAS  Google Scholar 

  73. Dai Z, Yang A, Bao X, Yang R (2019) Facile non-enzymatic electrochemical sensing for glucose based on Cu2O–BSA nanoparticles modified GCE. Sensors 19(12):2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lv J, Kong C, Xu Y, Yang Z, Zhang X, Yang S, Meng G, Bi J, Li J, Yang S (2017) Facile synthesis of novel CuO/Cu2O nanosheets on copper foil for high sensitive nonenzymatic glucose biosensor. Sens Actuators, B Chem 248:630–638

    Article  CAS  Google Scholar 

  75. Zhang Z, Pan P, Liu X, Yang Z, Wei J, Wei Z (2017) 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing. Mater Chem Phys 187:28–38

    Article  CAS  Google Scholar 

  76. Yan X, Yang J, Ma L, Tong X, Wang Y, Jin G, Guo XY (2015) Size-controlled synthesis of Cu2O nanoparticles on reduced graphene oxide sheets and their application as non-enzymatic glucose sensor materials. J Solid State Electrochem 19(10):3195–3199

    Article  CAS  Google Scholar 

  77. Khan R, Ahmad R, Rai P, Jang LW, Yun JH, Yu YT, Hahn YB, Lee IH (2014) Glucose-assisted synthesis of Cu2O shuriken-like nanostructures and their application as nonenzymatic glucose biosensors. Sensors Actuators B: Chem 203:471–476

    Article  CAS  Google Scholar 

  78. Wang M, Song X, Song B, Liu J, Hu C, Wei D, Wong CP (2017) Precisely quantified catalyst based on in situ growth of Cu2O nanoparticles on a graphene 3D network for highly sensitive glucose sensor. Sens Actuators B Chem 250:333–341

    Article  CAS  Google Scholar 

  79. Tang L, Lv J, Kong C, Yang Z, Li J (2016) Facet-dependent nonenzymatic glucose sensing properties of Cu2O cubes and octahedra. New J Chem 40(8):6573–6576

    Article  CAS  Google Scholar 

  80. Guascito MR, Boffi P, Malitesta C, Sabbatini L, Zambonin G (1996) Conducting polymer electrodes modified by metallic species for electrocatalytic purposes—spectroscopic and microscopic characterization. Mater Chem Phys 44(1):17–24

    Article  CAS  Google Scholar 

  81. Wei H, Sun JJ, Guo L, Li X, Chen GN (2009) Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode. Chem Commun 20:2842–2844

    Article  Google Scholar 

  82. Lu N, Shao C, Li X, Shen T, Zhang M, Miao F, Zhang P, Zhang X, Wang K, Zhang Y, Liu Y (2014) CuO/Cu2O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity. Rsc Advances 4(59):31056–31061

    Article  CAS  Google Scholar 

  83. Wu HX, Cao WM, Li Y, Liu G, Wen Y, Yang HF, Yang SP (2010) In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim Acta 55(11):3734–3740

    Article  CAS  Google Scholar 

Download references

Funding

The principal author is grateful to the CSIR, New Delhi, India, for financial support (SRF (CSIR) Fellowship, 09/100(0246)/2020-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

Anoop Singh: methodology, writing, reviewing and editing. Asha Sharma: writing, reviewing and editing. Ashok K. Sundramoorthy: writing, reviewing and editing. Sandeep Arya: conceptualization, supervision, methodology, writing, reviewing and editing.

Corresponding author

Correspondence to Sandeep Arya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Sharma, A., Sundramoorthy, A.K. et al. Synthesis and characterization of wearable cuprous oxide/conductive fabric enabled non-enzymatic electrochemical sensing of glucose. Ionics 29, 2501–2513 (2023). https://doi.org/10.1007/s11581-023-04985-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04985-1

Keywords

Navigation