Skip to main content
Log in

Amplifying main physical characteristics of CuO films using ascorbic acid as the reducer and stabilizer agent

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Copper oxide thin films have been grown by successive ionic layer adsorption and reaction technique, which is inexpensive, environmentally friendly and simple onto soda-lime glass substrates from an aqueous copper (II) chloride dehydrate solution with and without the addition of ascorbic acid (AA) at 70 °C. Surface morphology, crystalline structure, chemical compositions, optical and electrical properties of thin films were investigated with a focus on the influences of different concentrations of AA. The analysis exhibited that the main physical performances of the CuO films were found to change with AA content. Estimated crystallite sizes decreased from 24.64 to 12.78 nm with the addition of AA in the growth bath solutions. The optical bandgap energy of CuO is found to increase from 1.42 to 1.55 eV as a consequence of the increasing AA content. As the AA concentration in the solution bath increases the transmittance increases from ≈ 5 to ≈28%. FTIR transmittance spectra of CuO have a characteristic stretching vibration mode of the metal–oxide bonds and the addition of AA caused the appearance of many peaks of this molecule. Contact resistance values decreased with the AA content from 0.657 × 109 to 0.342 × 109 Ω. It is worth noting that the deposition technique is low cost and very simple; obtained CuO thin films could be appropriate for different technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.A.A. Ahmed, E.A.A. Alahsab, A. Abdulwahab, The influence of Zn and Mg doping on the structural and optical properties of NiO nano-structures for optoelectronic applications. Results Phys. 22, 103938 (2021)

    Article  Google Scholar 

  2. B. Şahin, S. Soylu, M. Kara, M. Türkmen, R. Aydin, H. Çetin, Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceram. Int. 47, 341–350 (2021)

    Article  Google Scholar 

  3. B. Şahin, T. Kaya, Facile preparation and characterization of nanostructured ZnO/CuO composite thin film for sweat concentration sensing applications. Mat. Sci. Semicon. Proc. 121, 105428 (2021)

    Article  Google Scholar 

  4. A. Maleki, F. Moradi, B. Shahmoradi, R. Rezaee, S.-M. Lee, The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate. J. Mol. Liq. 297, 111918 (2020)

    Article  Google Scholar 

  5. M. Khan, B. Mehmood, G.M. Mustafa, K. Humaiyoun, N. Alwadai, A.H. Almuqrin, H. Albalawi, M. Iqbal, Effect of silver (Ag) ions irradiation on the structural, optical and photovoltaic properties of Mn doped TiO2 thin films based dye sensitized solar cells. Ceram. Int. 47, 15801–15806 (2021)

    Article  Google Scholar 

  6. B. Şahin, R. Aydın, H. Cetin, Variation of the key morphological, structural, optical and electrical properties of SILAR CdO with alkaline earth Ca2+ ions doping. Ceram. Int. 45, 16748–16758 (2019)

    Article  Google Scholar 

  7. W. He, Z. Wang, T. Zheng, L. Wang, S. Zheng, Origin of the Band Gap Reduction of In-Doped β-Ga2O3. J. Electron. Mater. 50, 3856–3861 (2021)

    Article  ADS  Google Scholar 

  8. M. Aghazadeh, H. Forati-Rad, K. Yavari, K. Mohammadzadeh, On-pot fabrication of binder-free composite of iron oxide grown onto porous N-doped graphene layers with outstanding charge storage performance for supercapacitors. J. Mater. Sci.: Mater. Electron. 32, 13156–13176 (2021)

    Google Scholar 

  9. B.P. Singh, M. Chaudhary, A. Kumar, A.K. Singh, Y.K. Gautam, S. Rani, R. Walia, Effect of Co and Mn doping on the morphological, optical and magnetic properties of CuO nanostructures. Solid State Sci. 106, 106296 (2020)

    Article  Google Scholar 

  10. S. Kamble, V. Mote, Optical and room-temperature ferromagnetic properties of Ni-doped CuO nanocrystals prepared via auto-combustion method. J. Mater. Sci.: Mater. Electron. 32, 5309–5315 (2021)

    Google Scholar 

  11. Y. Zhou, J. Li, W. Peng, Y. Liu, J. Zhang, G. Xiang, X. Zhu, R. Li, H. Wang, G. Deng, Near-white light-emitting diode from p-CuO/n-GaN heterojunction with an i-CuO electron blocking layer. J. Alloy Compd. 867, 159145 (2021)

    Article  Google Scholar 

  12. M. Ajili, N.T. Kamoun, Structural and optoelectronic studies of CuO, In2-xAlxS3 and SnO2: F sprayed thin films for solar cell application: Au/CuO (p)/In2-xAlxS3 (n)/SnO2: F. Optik 229, 166222 (2021)

    Article  ADS  Google Scholar 

  13. F.I. Ali, S.T. Mahmoud, F. Awwad, Y.E. Greish, A.F. Abu-Hani, Low power consumption and fast response H2S gas sensor based on a chitosan-CuO hybrid nanocomposite thin film. Carbohydr. Polym. 236, 116064 (2020)

    Article  Google Scholar 

  14. N. Akram, J. Guo, Y. Guo, Y. Kou, H. Suleman, J. Wang, Enhanced synergistic catalysis of novel Ag2O/CuO nanosheets under visible light illumination for the photodecomposition of three dyes. J. Environ. Chem. Eng. 9, 104824 (2021)

    Article  Google Scholar 

  15. M. Ristova, V. Mirceski, R. Neskovska, Voltammetry of chemically deposited CuxO electrochromic films, coated with ZnO or TiO2 electrocatalyst layers. J. Solid State Electr. 19, 749–756 (2015)

    Article  Google Scholar 

  16. K. Sahu, A. Bisht, S.A. Khan, A. Pandey, S. Mohapatra, Engineering of morphological, optical, structural, photocatalytic and catalytic properties of nanostructured CuO thin films fabricated by reactive DC magnetron sputtering. Ceram. Int. 46, 7499–7509 (2020)

    Article  Google Scholar 

  17. J. Sultana, S. Paul, A. Karmakar, G.K. Dalapati, S. Chattopadhyay, Optimizing the thermal annealing temperature: technological route for tuning the photo-detecting property of p-CuO thin films grown by chemical bath deposition method. J. Mater. Sci.: Mater. Electron. 29, 12878–12887 (2018)

    Google Scholar 

  18. Y. Zhou, H. Zhang, Y. Yan, Catalytic oxidation of ethyl acetate over CuO/ZSM-5 zeolite membrane coated on stainless steel fibers by chemical vapor deposition. Chem. Eng. Res. Des. 157, 13–24 (2020)

    Article  Google Scholar 

  19. S.Y. Khew, C.F. Tan, H. Yan, S. Lin, E. San Thian, R. Zhou, M. Hong, Nanosecond laser ablation for enhanced adhesion of CuO nanowires on copper substrate and its application for oil-water separation. Appl. Surf. Sci. 465, 995–1002 (2019)

    Article  ADS  Google Scholar 

  20. A. Inyang, G. Kibambo, M. Palmer, F. Cummings, M. Masikini, C. Sunday, M. Chowdhury, One step copper oxide (CuO) thin film deposition for non-enzymatic electrochemical glucose detection. Thin Solid Films 709, 138244 (2020)

    Article  ADS  Google Scholar 

  21. S. Shehayeb, X. Deschanels, L. Ghannam, I. Karame, G. Toquer, Tandem selective photothermal absorbers based on EPD of CuO colloidal suspension coupled with dip-coated silica. Surf. Coat. Technol. 408, 126818 (2021)

    Article  Google Scholar 

  22. K. Yang, P. Hu, S. Wu, L. Ren, M. Yang, W. Zhou, F. Yu, Y. Wang, M. Meng, G. Wang, Room-temperature ferromagnetic CuO thin film grown by plasma-assisted molecular beam epitaxy. Mater. Lett. 166, 23–25 (2016)

    Article  Google Scholar 

  23. O. Daoudi, A. Elmadani, M. Lharch, M. Fahoume, A new efficient synthesis of CuO thin films using modified SILAR method. Opt. Quant. Electron. 52, 1–17 (2020)

    Article  Google Scholar 

  24. A. Ravichandran, K. Dhanabalan, S. Valanarasu, A. Vasuhi, A. Kathalingam, Role of immersion time on the properties of SILAR deposited CuO thin films. J. Mater. Sci.: Mater. Electron. 26, 921–926 (2015)

    Google Scholar 

  25. S. Visalakshi, R. Kannan, S. Valanarasu, H.-S. Kim, A. Kathalingam, R. Chandramohan, Effect of bath concentration on the growth and photovoltaic response of SILAR-deposited CuO thin films. Appl. Phys. A 120, 1105–1111 (2015)

    Article  ADS  Google Scholar 

  26. K. Raja, P. Ramesh, D. Geetha, T. Kokila, R. Sathiyapriya, Synthesis of structural and optical characterization of surfactant capped ZnO nanocrystalline. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 155–161 (2015)

    Article  ADS  Google Scholar 

  27. M. Amanullah, S. Rizwan, Surfactant-assisted carbon doping in ZnO nanowires using Poly Ethylene Glycol (PEG). Mater. Chem. Phys. 180, 128–134 (2016)

    Article  Google Scholar 

  28. A.A. Kassem, H.N. Abdelhamid, D.M. Fouad, S.A. Ibrahim, Metal-organic frameworks (MOFs) and MOFs-derived CuO@ C for hydrogen generation from sodium borohydride. Int. J. Hydrogen Energy 44, 31230–31238 (2019)

    Article  Google Scholar 

  29. A. Othmani, Z. Kouki, S. Kouass, F. Touati, H. Dhaouadi, A highly sensitive hydrazine and hydrogen peroxide non-enzymatic sensor based on CuO nanoplatelets. J. Mater. Sci.: Mater. Electron. 32, 3566–3576 (2021)

    Google Scholar 

  30. S.-B. He, A.-L. Hu, Q.-Q. Zhuang, H.-P. Peng, H.-H. Deng, W. Chen, G.-L. Hong, Ascorbate oxidase mimetic activity of Copper(II) oxide nanoparticles. ChemBi Chem 21, 978–984 (2020)

    Article  Google Scholar 

  31. E. Sharmin, S. Shreaz, F. Zafar, D. Akram, V. Raja, S. Ahmad, Linseed polyol-assisted, microwave-induced synthesis of nano CuO embedded in polyol-polyester matrix: antifungal behavior and coating properties. Prog. Org. Coat. 105, 200–211 (2017)

    Article  Google Scholar 

  32. A. Umer, S. Naveed, N. Ramzan, M.S. Rafique, M. Imran, A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Matéria. (Rio de janeiro) 19, 197–203 (2014)

    Article  Google Scholar 

  33. O. Motyka, K. Štrbová, E. Olšovská, J. Seidlerová, Influence of nano-ZnO exposure to plants on l-ascorbic acid levels: Indication of nanoparticle-induced oxidative stress. J. Nanosci. Nanotechnol. 19, 3019–3023 (2019)

    Article  Google Scholar 

  34. A. Pruna, D. Tamvakos, M. Sgroi, D. Pullini, E.A. Nieto, D. Busquets-Mataix, Electrocapacitance of hybrid film based on graphene oxide reduced by ascorbic acid. Int. J. Mater. Res. 106, 398–405 (2015)

    Article  Google Scholar 

  35. M.R. Ganjali, F.G. Nejad, H. Beitollahi, S. Jahani, M. Rezapour, B. Larijani, Highly sensitive voltammetric sensor for determination of ascorbic acid using graphite screen printed electrode modified with ZnO/Al2O3 nanocomposite. Int. J. Electrochem. Sci 12, 3231–3240 (2017)

    Article  Google Scholar 

  36. A. Wang, L. Chen, F. Xu, Z. Yan, In situ synthesis of copper nanoparticles within ionic liquid-in-vegetable oil microemulsions and their direct use as high efficient nanolubricants. Rsc. Adv. 4, 45251–45257 (2014)

    Article  ADS  Google Scholar 

  37. A. Akkaya, E. Ayyıldız, Automation software for semiconductor research laboratories: electrical parameter calculation program (SeCLaS-PC). J. Circuits, Syst. Comput. 29, 2050215 (2020)

    Article  Google Scholar 

  38. A. Akkaya, E. Ayyıldız, Automation software for semiconductor research laboratories: measurement system and instrument control program (SeCLaS-IC). Mapan 35, 343–350 (2020)

    Article  Google Scholar 

  39. Y. Zhao, J. Zhao, Z. Su, X. Hao, D. Ma, Y. Lu, J. Guo, Effect of surfactants on fabricating CuO nanoleaves and Cu nanocages at room temperature. Colloids Surf., A 436, 34–40 (2013)

    Article  Google Scholar 

  40. V. Rajendran, J. Gajendiran, Preparation and characterization of nanocrystalline CuO powders with the different surfactants and complexing agent mediated precipitation method. Mater. Res. Bull. 56, 134–137 (2014)

    Article  Google Scholar 

  41. A. Abedini, A.R. Daud, M.A. Abdul Hamid, N. Kamil Othman, E. Saion, A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett. 8, 474 (2013)

    Article  ADS  Google Scholar 

  42. Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, C. Lin, Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution. Chem.—A Eur. J. 12, 2542–2549 (2006)

    Article  Google Scholar 

  43. T. Atwee, A.S. Gadallah, M.A. Salim, A.M. Ghander, Effect of film thickness on structural, morphological, and optical properties of Cu2ZnSnS4 thin films prepared by sol–gel spin coating. Appl. Phys. A 125, 270 (2019)

    Article  ADS  Google Scholar 

  44. E. Beltrán-Partida, B. Valdez-Salas, E. Valdez-Salas, G. Pérez-Cortéz, N. Nedev, Synthesis, characterization, and in situ antifungal and cytotoxicity evaluation of ascorbic acid-capped copper nanoparticles. J. Nanomater. 2019, 1–10 (2019)

    Article  Google Scholar 

  45. D.D. Thongam, J. Gupta, N.K. Sahu, D. Bahadur, Investigating the role of different reducing agents, molar ratios, and synthesis medium over the formation of ZnO nanostructures and their photo-catalytic activity. J. Mater. Sci. 53, 1110–1122 (2018)

    Article  ADS  Google Scholar 

  46. M.M. Rashad, A.E. Shalan, Surfactant-assisted hydrothermal synthesis of titania nanoparticles for solar cell applications. J. Mater. Sci.: Mater. Electron. 24, 3189–3194 (2013)

    Google Scholar 

  47. H.M. Pathan, C.D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull Mater. Sci. 27, 85–111 (2004)

    Article  Google Scholar 

  48. H. Siddiqui, M.S. Qureshi, F.Z. Haque, Surfactant assisted wet chemical synthesis of copper oxide (CuO) nanostructures and their spectroscopic analysis. Optik 127, 2740–2747 (2016)

    Article  ADS  Google Scholar 

  49. S. Cho, H. Jeong, D.-H. Park, S.-H. Jung, H.-J. Kim, K.-H. Lee, The effects of vitamin C on ZnO crystal formation. CrystEngComm 12, 968–976 (2010)

    Article  Google Scholar 

  50. L. Al-Salem, R. Seoudi, Influence of ascorbic acid as modifier on the particle size and the optical properties of ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 31, 22642–22651 (2020)

    Google Scholar 

  51. A. Moshalagae Motlatle, S. Kesavan Pillai, M. Rudolf Scriba, S. Sinha Ray, Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles. J. Nanopart. Res. 18, 312 (2016)

    Article  ADS  Google Scholar 

  52. Z. Tang, A. Shahzad, W.-S. Kim, T. Yu, Cost-effective aqueous-phase synthesis of long copper nanowires. Rsc. Adv. 5, 83880–83884 (2015)

    Article  ADS  Google Scholar 

  53. R. Aydın, B. Şahin, The role of Triton X-100 as a surfactant on the CdO nanostructures grown by the SILAR method. J. Alloy Compd. 705, 9–13 (2017)

    Article  Google Scholar 

  54. A. Akkaya, B. Şahin, R. Aydın, H. Çetin, E. Ayyıldız, Solution-processed nanostructured ZnO/CuO composite films and improvement its physical properties by lustrous transition metal silver doping. J. Mater. Sci.: Mater. Electron. 31, 14400–14410 (2020)

    Google Scholar 

  55. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing, 1956)

    Google Scholar 

  56. P. Scherrer, Bestimmung der Grösse und der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen, Nahrichten von der Gesellschaft der Wissenschaften, Göttingen, Mathematisch-Physikalische Klasse, Vol. 2, 1918, pp. 98–100

  57. J. Xiong, Y. Wang, Q. Xue, X. Wu, Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid. Green Chem. 13, 900–904 (2011)

    Article  Google Scholar 

  58. M.Y. Alawadhi, S. Sabbaghianrad, Y. Huang, T.G. Langdon, Evaluating the paradox of strength and ductility in ultrafine-grained oxygen-free copper processed by ECAP at room temperature. Mater. Sci. Eng.: A 802, 140546 (2021)

    Article  Google Scholar 

  59. A. Badawi, S.S. Alharthi, M.G. Althobaiti, A.N. Alharbi, H. Assaedi, H.I. Alkhammash, N. Al-Hosiny, Structure investigation and optical bandgap tuning of La-doped CuO nanostructured films prepared by spray pyrolysis technique. Appl. Phys. A 127, 235 (2021)

    Article  ADS  Google Scholar 

  60. K.D. Arun Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, H. Algarni, Effect of potential voltages on key functional properties of transparent AZO thin films prepared by electrochemical deposition method for optoelectronic applications. J. Mater. Res. 33, 1523–1533 (2018)

    Article  ADS  Google Scholar 

  61. L.M. Bertus, C. Faure, A. Danine, C. Labrugere, G. Campet, A. Rougier, A. Duta, Synthesis and characterization of WO3 thin films by surfactant assisted spray pyrolysis for electrochromic applications. Mater. Chem. Phys. 140, 49–59 (2013)

    Article  Google Scholar 

  62. J.K. Sharma, M.S. Akhtar, S. Ameen, P. Srivastava, G. Singh, Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloy Compd. 632, 321–325 (2015)

    Article  Google Scholar 

  63. A. Nezamzadeh-Ejhieh, S. Hushmandrad, Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Appl. Catal. A 388, 149–159 (2010)

    Article  Google Scholar 

  64. N. Phutanon, P. Pisitsak, H. Manuspiya, S. Ummartyotin, Synthesis of three-dimensional hierarchical CuO flower-like architecture and its photocatalytic activity for rhodamine b degradation. J. Sci.: Adv. Mater. Device. 3, 310–316 (2018)

    Google Scholar 

  65. C.Y. Panicker, H.T. Varghese, D. Philip, FT-IR, FT-Raman and SERS spectra of Vitamin C. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 65, 802–804 (2006)

    Article  ADS  Google Scholar 

  66. K.R. Ahammed, M. Ashaduzzaman, S.C. Paul, M.R. Nath, S. Bhowmik, O. Saha, M.M. Rahaman, S. Bhowmik, T.D. Aka, Microwave assisted synthesis of zinc oxide (ZnO) nanoparticles in a noble approach: utilization for antibacterial and photocatalytic activity. SN Appl. Sci. 2, 1–14 (2020)

    Google Scholar 

  67. G. Richner, G. Puxty, Assessing the chemical speciation during CO2 absorption by aqueous amines using in situ FTIR. Ind. Eng. Chem. Res. 51, 14317–14324 (2012)

    Article  Google Scholar 

  68. A. Tasdemir, R. Aydin, A. Akkaya, N. Akman, Y. Altinay, H. Cetin, B. Sahin, A. Uzun, E. Ayyildiz, A green approach for the preparation of nanostructured zinc oxide: characterization and promising antibacterial behaviour. Ceram. Int. 47, 19362–19373 (2021)

    Article  Google Scholar 

  69. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b) 15, 627–637 (1966)

    Article  ADS  Google Scholar 

  70. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)

    Book  Google Scholar 

  71. S. Benramache, Y. Aoun, S. Lakel, B. Benhaoua, The effect of film thickness on the structural, optical and electrical properties of ZnO thin films deposited by ultrasonic spray deposition. Mater. Res. Express 6, 126418 (2019)

    Article  ADS  Google Scholar 

  72. H. Ben Saâd, M. Ajili, S. Dabbabi, N.T. Kamoun, Investigation on thickness and annealing effects on physical properties and electrical circuit model of CuO sprayed thin films. Superlattice Microst. 142, 106508 (2020)

    Article  Google Scholar 

  73. F.S. Kodeh, T.M. Hammad, Influence of surfactants on the optical properties of WO3 nanoparticles synthesis by precipitation method. Biomed. J. of Sci. Tech. Res. 28, 21907–21912 (2020)

    Google Scholar 

  74. T.S. Tripathi, I. Terasaki, M. Karppinen, Anomalous thickness-dependent optical energy gap of ALD-grown ultra-thin CuO films. J. Phys.: Condens. Matter 28, 475801 (2016)

    ADS  Google Scholar 

  75. G.G. Welegergs, H.G. Gebretnisae, M.G. Tsegay, Z.Y. Nuru, S. Dube, M. Maaza, Thickness dependent morphological, structural and optical properties of SS/CuO nanocoatings as selective solar absorber. Infrared Phys. Techn. 113, 103619 (2021)

    Article  Google Scholar 

  76. G. Kaur, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Prog. Nat. Sci.: Mater. Int. 25, 12–21 (2015)

    Article  Google Scholar 

  77. H. Cavusoglu, R. Aydin, Complexing agent triethanolamine mediated synthesis of nanocrystalline CuO thin films at room temperature via SILAR technique. Superlattice Microst. 128, 37–47 (2019)

    Article  ADS  Google Scholar 

  78. L. De Los Santos Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J.A. Aguiar, Y. Majima, Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates, Thin Solid Films, 520 6368-6374 (2012)

  79. B. Şahin, T. Kaya, Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping. Appl. Surf. Sci. 362, 532–537 (2016)

    Article  ADS  Google Scholar 

  80. S. Dinç, B. Şahin, T. Kaya, Improved sensing response of nanostructured CuO thin films towards sweat rate monitoring: Effect of Cr doping. Mat. Sci. Semicon. Proc. 105, 104698 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Akkaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaya, A., Kahveci, O., Aydın, R. et al. Amplifying main physical characteristics of CuO films using ascorbic acid as the reducer and stabilizer agent. Appl. Phys. A 127, 911 (2021). https://doi.org/10.1007/s00339-021-05078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05078-4

Keywords

Navigation