Skip to main content
Log in

Effect of Deposition Potential on Synthesis, Structural, Morphological and Photoconductivity Response of Cu2O Thin Films by Electrodeposition Technique

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The present work describes the effect of deposition potentials on structural, morphological, optical, electrical and photoconductivity responses of cuprous oxide (Cu2O) thin films deposited on fluorine-doped tin oxide glass substrate by employing electrodeposition technique. X-ray diffraction patterns reveal that the deposited films have a cubic structure grown along the preferential (111) growth orientation and crystallinity of the film deposited at − 0.4 V is improved compared to the films deposited at − 0.2, − 0.3 and − 0.5 V. Scanning electron microscopy displays that surface morphology of Cu2O film has a well-defined three-sided pyramid-shaped grains which are uniformly distributed over the surface of the substrates and are significantly changed as a function of deposition potential. Raman and photoluminescence spectra manifest that the film deposited at − 0.4 V has a good crystal quality with higher acceptor concentration compared to other films. UV–visible analysis illustrates that the absorption of Cu2O thin film deposited at − 0.4 V is notably higher compared to other films and the band gap of Cu2O thin films decreases from 2.1 to 2.04 eV with an increase in deposition potential from − 0.2 to − 0.5 V. The frequency–temperature dependence of impedance analysis shows that the film deposited at − 0.4 V has a high conductivity. IV measurements elucidate that the film deposited at − 0.4 V exhibits a good photoconductivity response compared to films deposited in other deposition potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.P. Pollack, D. Trivich, J. Appl. Phys. 46, 163 (1975)

    Article  Google Scholar 

  2. M. Izaki, S. Sasaki, F. Binti Mohamed, T. Shinagawa, Thin Solid Films 520, 1779 (2011)

    Article  Google Scholar 

  3. R.G. Delatorre, M.L. Munford, R. Zandonay, V.C. Zolden, Appl. Phys. Lett. 88, 233504 (2006)

    Article  Google Scholar 

  4. A. Mittiga, E. Salza, F. Sarto, M. Tucci, R. Vasanthi, Appl. Phys. Lett. 88, 163502 (2006)

    Article  Google Scholar 

  5. G. Yang, A. Chen, M. Fu, H. Long, P. Lu, J. Appl. Phys. A 104, 171 (2010)

    Article  Google Scholar 

  6. S. Song, R. RaO, H. Yang, A. Zhang, J. Phys. Chem. C 114, 13998 (2010)

    Article  Google Scholar 

  7. C. Wang, B. Geng, J. Liu, Y. Zhao, Cryst. Eng. Commun. 13, 697 (2011)

    Article  Google Scholar 

  8. A. Ahmed, N.S. Gaibhiyle, S. Kurian, J. Solid State Chem. 183, 2248 (2010)

    Article  Google Scholar 

  9. V.F. Drobny, D.L. Pulfrey, Thin Solid Films 61, 89 (1979)

    Article  Google Scholar 

  10. D. Osorio-Rivera, G. Torred-Delgado, J. Marquez-Marin, J. Mater. Sci.: Mater. Electron. 29, 851 (2018)

    Google Scholar 

  11. D.S.C. Halin, I.A. Talib, A.R. Daud, Int. J. Photoenergy 2014, 1 (2014)

    Article  Google Scholar 

  12. A. Chen, H. Long, X. Li, Y. Li, G. Yang, P. Lu, Vaccum 83, 927 (2009)

    Article  Google Scholar 

  13. G.F. Pan, S.B. Fan, J. Liang, Y.X. Liu, RSC Adv. 5, 42477 (2015)

    Article  Google Scholar 

  14. M.J. Chen, C.Y. Wu, Y.M. Kuo, J. Appl. Phys. A 108, 133 (2012)

    Article  Google Scholar 

  15. K.P. Ganesan, N. Anandhan, V. Dharuman, P. Sami, R. Panneerselvam, T. Marimuthu, Results Phys. 7, 82 (2017)

    Article  Google Scholar 

  16. T. Marimuthu, N. Anandhan, R. Thangamuthu, S. Surya, J. Mater. Sci.: Mater. Electron. 29, 12830 (2018)

    Google Scholar 

  17. T. Marimuthu, N. Anandhan, R. Thangamuthu, J. Mater. Sci. 53, 12441 (2018)

    Article  Google Scholar 

  18. T. Marimuthu, N. Anandhan, R. Thangamuthu, Appl. Surf. Sci. 428, 385 (2018)

    Article  Google Scholar 

  19. X. Jiang, M. Zhan, S. Shi, G. He, X. Song, Z. Sun, Nanoscale Res. Lett. 9, 219 (2014)

    Article  Google Scholar 

  20. S. Laioudi, A.Y. Bioud, A. Azizi, G. Schmerber, Semicond. Sci. Technol. 28, 15005 (2013)

    Article  Google Scholar 

  21. S. Haller, J. Jung, J. Rousset, D. Lincot, Electrochim. Acta 82, 402 (2012)

    Article  Google Scholar 

  22. J. Han, J. Chang, R. Wei, Int. J. Hydrogen Energy 43, 13764 (2018)

    Article  Google Scholar 

  23. M. Zhao, Y. Jiang, J. Lv, J. Mater Sci: Mater. Electrons 27, 1799 (2016)

    Google Scholar 

  24. D. Mohra, M. Benhaliliba, M. Serin, J. Semicond. 37, 103001 (2016)

    Article  Google Scholar 

  25. X. Jiang, M. Zhang, S. Shi, J. Electrochem. Soc. 161, D640 (2014)

    Article  Google Scholar 

  26. D. Yan, S. Li, M. Hu, S. Liu, Y. Zhu, M. CaO, Sens. Actuators B:Chem. 211, 318 (2015)

    Article  Google Scholar 

  27. T. Marimuthu, N. Anandhan, R. Thangamuthu, M. Mummoorthi, S. Rajendran, G. Ravi, Mater. Res. Express 2, 015502 (2016)

    Article  Google Scholar 

  28. L. Wan, AIP Conf Proc. 1995, 020017 (2018)

    Article  Google Scholar 

  29. H.P. Klug, L.E. Alexander, X-ray Diffr. Proced. Polycryst. Amorph. Mater 992, 1 (1974)

    Google Scholar 

  30. T. Mahalingam, V. Dhanasekaran, K. Sundraram, A. Kathalingam, J.K. Rhee, J. Ionics 18, 299 (2012)

    Article  Google Scholar 

  31. T. Marimuthu, N. Anandhan, R. Thangamuthu, S. Surya, Superlattices Microstruct. 98, 332 (2016)

    Article  Google Scholar 

  32. S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Rata, Phys. Rev. B 60, 9191 (1999)

    Article  Google Scholar 

  33. M. Abdelfatah, J. Ledig, J. Electrochem. Soc. 5, 183 (2016)

    Google Scholar 

  34. S. Chatterjee, S.K. Saha, A.J. Pal, Sol. Energy Mater. Sol. Cells 147, 17 (2016)

    Article  Google Scholar 

  35. W. Septina, S. Ikeda, M. Alam Khan, Electrochim. Acta 56, 4882 (2011)

    Article  Google Scholar 

  36. S. Wu, Z. Yin, Q. He, G. Lu, X. Zhou, H. Zhang, J. Mater. Chem. 21, 3467 (2011)

    Article  Google Scholar 

  37. S. Eisemann, A. Kronenberger, A. Laufer, J. Bieber, G. Hass, S. Lautenschlager, G. Homm, P.J. Klar, B.K. Meyer, Phys. Stat. Solid A 209, 513 (2012)

    Google Scholar 

  38. M. Abdelfatah, J. Ledig, A. El-Share, A. Sharafeev, J. Solid State. Sci. Technol. 5, Q183 (2016)

    Article  Google Scholar 

  39. M.C. Huang, T. Hai Wang, W.S. Chang, J.C. Lin, C.C. Wu, Appl. Surf. Sci. 301, 369 (2014)

    Article  Google Scholar 

  40. Y. Liu, C. Liu, R. Mu, H. Yang, C. Shao, J.Y. Zhang, Y.M. Lu, D. Shen, X.W. Fan, Semicond. Sci. Technol. 20, 44 (2005)

    Article  Google Scholar 

  41. Z. Min, L.V. Yao, J. Guo, S. Yue, C. Li, H. Gang, J. Mater. Sci. Mater. Electron. 25, 1799 (2015)

    Google Scholar 

  42. T. Marimuthu, N. Anandhan, R. Thangamuthu, M. Mummoorthi, G. Ravi, J. Alloys Compd. 677, 211 (2016)

    Article  Google Scholar 

  43. Y. Akaltun, M. Aliyildirim, A. Stes, M. Yidirim, Optics Commun. 284, 2307 (2011)

    Article  Google Scholar 

  44. T. Acharya, R.N.P. Chouhary, Mater. Chem. Phys. 177, 131 (2016)

    Article  Google Scholar 

  45. I. Latif, T.B. Alwan, A.H. Al-Dujaili, Nanosci. Nanotechnolol. 2, 190 (2012)

    Article  Google Scholar 

  46. A. Rawat, H.K. Mahavar, A. Tanwar, Bull. Mater. Sci. 37, 273 (2014)

    Article  Google Scholar 

  47. T. Logu, R. Raliya, K. Sethuraman, Cryst. Eng. Commun. 1039, 1 (2017)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding and support from the RUSA-Phase 2.0 grant sanctioned vide Letter. No. F. 24-51/2014-U, Policy (TNMulti-Gen), Dept. of Edn. Govt. of India. Dt. 09.10.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Anandhan.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, K.P., Anandhan, N., Marimuthu, T. et al. Effect of Deposition Potential on Synthesis, Structural, Morphological and Photoconductivity Response of Cu2O Thin Films by Electrodeposition Technique. Acta Metall. Sin. (Engl. Lett.) 32, 1065–1074 (2019). https://doi.org/10.1007/s40195-019-00876-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00876-5

Keywords

Navigation