Skip to main content

Advertisement

Log in

Influence of temperature on the cutting performance of single-crystal beryllium: a molecular dynamics simulation investigation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, molecular dynamics (MD) simulations were carried out to investigate the cutting performance of beryllium at various temperatures (25 °C, 200 °C, 300 °C, 400 °C). The cutting forces, friction coefficient, stress in the cutting zone, and surface quality as the key indicators are used to characterize the cutting behaviors of beryllium. An important observation is that the tangential force and normal force decrease by 32% and 36%, respectively when the temperature increases from 25 to 200 °C. During the cutting process, it is found that the friction coefficient is minimum at 25 °C and becomes maximum at 200 °C. The friction coefficient starts to decrease from 25 to 300 °C. It is also observed that compressive stress is the main stress state in the shear deformation zone. The maximum stress is up to 9 GPa, and the tensile stress with the maximum value of 5 GPa is mainly distributed in the friction area of the back surface of the workpiece. Furthermore, with an increase in temperature, the compressive stress in the shear deformation zone gradually decreases, and the tensile stress increases. Finally, the distribution of subsurface defects and the crystal structure of the material at different temperatures are analyzed. It is found that the number and the type of defects in the sub-surface layer of the workpiece fluctuate with an increasing temperature. The number of defects becomes the lowest at 300 °C, and there are burrs on the machined surface that are formed at the beginning of cutting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.F. Zheng, X.G. Wang, Y.N. Li, Progress in the Application of Rare Light Metal Beryllium. Mater. Sci. Forum. 977, 261–271 (2020)

    Article  Google Scholar 

  2. L. Shi, Y.S. Xun, F.H. Liu, Development and application of beryllium mirrors in optical systems. Chinese Optics 7, 749–758 (2014). https://doi.org/10.3788/CO.20140705.0749

    Article  Google Scholar 

  3. J. Wang, G. Zhang, N. Chen, A review of tool wear mechanism and suppression method in diamond turning of ferrous materials. Int. J. Adv. Manuf. Technol. 113, 3027–3055 (2021). https://doi.org/10.1007/s00170-021-06700-8

    Article  Google Scholar 

  4. A. Khomutov, V. Barabash, V. Chakin, Beryllium for fusion application – recent results. J. Nucl. Mater. 1, 630–637 (2002). https://doi.org/10.1016/S0022-3115(02)01263-1

    Article  ADS  Google Scholar 

  5. K. Viacheslav, L. Artem, D. Ed, D. Chris, H. Patrick, S. Roberts (2021), Radiation induced hardening of beryllium during low temperature He implantation. J Nucl Mater. 555,153130

  6. R.W. Li, P. Dong, X. Wang, X.L. Wang, Stress distribution and fracture behavior of beryllium compact tension specimens. Mater. Charact. 59, 173–177 (2008). https://doi.org/10.3321/j.issn:1002-185X.2009.01.022

    Article  Google Scholar 

  7. P. Dong, R.W. Li, Numerical simulation of temperature field and stress field on cutting beryllium. Rare Metal Mat. Eng. 38, 1622–1625 (2009)

    Google Scholar 

  8. L.F. Zheng, X.G. Wang, L.N. Yue, Y.J. Xie, B.P. Wu, J.M. Zhong, Progress in the Application of Rare Light Metal Beryllium. Mater. Sci. Forum. 977, 261–271 (2020)

    Article  Google Scholar 

  9. S.L. Dong, Z.L. Wang, Y.K. Wang, J. Zhang, Micro-EDM drilling of high aspect ratio micro-holes and in situ surface improvement in C17200 beryllium copper alloy. J. Alloys Compd. 727, 1157–1164 (2017). https://doi.org/10.1016/j.jallcom.2017.08.162

    Article  Google Scholar 

  10. A. Sharma, S. Joshi, D. Datta, R. Balasubramaniam, Modeling and analysis of tool wear mechanisms in diamond turning of copper beryllium alloy. J. Manuf. Process. 56, 439–450 (2020). https://doi.org/10.1007/s12206-012-1214-9

    Article  Google Scholar 

  11. W.S. Woo, C.M. Lee, A study on the edge chipping according to spindle speed and inclination angle of workpiece in laser-assisted milling of silicon nitride. Opt. Laser Technol. 99, 351–362 (2018). https://doi.org/10.1016/j.optlastec.2017.09.023

    Article  ADS  Google Scholar 

  12. P. Zhang, H.W. Zhao, C.L. Shi, L. Zhang, H. Huang, L.Q. Ren, Influence of double-tip scratch and single-tip scratch on nano-scratching process via molecular dynamics simulation. Appl. Surf. Sci. 280, 751–756 (2013). https://doi.org/10.1016/j.apsusc.2013.05.056

    Article  ADS  Google Scholar 

  13. X.H. Zhang, D.D. Wen, Z.Y. Shi, S. Li, Z.X. Kang, J. J, Z.C. Zhang, Grinding performance improvement of laser micro-structured silicon nitride ceramics by laser macro-structured diamond wheels. Ceramics Int. 46, 795–802 (2020)

    Article  Google Scholar 

  14. G. Guerrini, A.H.A. Lutey, S.N. Melkote, A. Fortunato, High throughput hybrid laser assisted machining of sintered reaction bonded silicon nitride. J. Mater. Process. Technol. 252, 628–635 (2018). https://doi.org/10.1016/j.jmatprotec.2017.10.019

    Article  Google Scholar 

  15. D.H. Choi, J.R. Lee, N.R. Kang, T.J. Je, E.C. Jeon, Study on ductile mode machining of single-crystal silicon by mechanical machining. Int. J. Mach. Tool. Manu. 113, 1–9 (2017). https://doi.org/10.1016/j.ijmachtools.2016.10.006

    Article  Google Scholar 

  16. S. Goel, X. Luo, R.L. Reuben, Wear mechanism of diamond tools against single crystal silicon in single point diamond turning process. Tribol. Int. 57, 272–281 (2013). https://doi.org/10.1016/j.triboint.2012.06.027

    Article  Google Scholar 

  17. R. Komanduri, L.M. Raff, A review on the molecular dynamics simulation of machining at the atomic scale. P. I. Mech. Eng. B. J. Eng. 215, 1639–1672 (2001). https://doi.org/10.1243/0954405011519484

    Article  Google Scholar 

  18. F.Z. Fang, X.D. Liu, L.C. Lee, Super finishing of brittle materials–Summary of diamond cutting of brittle materials, Nanotechnol. Precis. Eng. 1, 38–47 (2003). https://doi.org/10.3969/j.issn.1672-6030.2003.01.008

    Article  Google Scholar 

  19. F.F. Xu, X.D. Zhang, F.Z. Fang, Surface characteristics of single-point cutting single crystal silicon using diamond tools, Nanotechnol. Precis. Eng. 11, 485–491 (2013). https://doi.org/10.3969/j.issn.1672-6030.2013.06.003

    Article  Google Scholar 

  20. Y.C. Liang, J.X. Chen, Molecular dynamics simulation of nanofabrication and mechanical properties of nanostructures. Acta Metall. Sin. 44, 119–124 (2008). https://doi.org/10.3321/j.issn:0412-1961.2008.08.009

    Article  Google Scholar 

  21. D. Liu, G. Wang, J.C. Yu, Molecular dynamics simulation on formation mechanism of grain boundary steps in micro-cutting of polycrystalline copper. Comput. Mater. Sci. 126, 3418–3425 (2017). https://doi.org/10.1016/j.commatsci.2016.10.001

    Article  Google Scholar 

  22. T.H. Fang, C.I. Weng, J.G. Chang, Molecular dynamics analysis of temperature effects on nanoindentation measurement. Mat. Sci. Eng. A 357, 7–12 (2003). https://doi.org/10.1016/S0921-5093(03)00219-3

    Article  Google Scholar 

  23. C.L. Liu, T.H. Fang, J.F. Lin, Atomistic simulations of hard and soft films under nanoindentation. Mat. Sci. Eng. A 452, 135–141 (2007)

    Article  Google Scholar 

  24. A.C. Lund, A.M. Hodge, C.A. Schuh, Incipient plasticity during nanoindentation at elevated temperatures. Appl. Phys. Lett. 85, 1362 (2004). https://doi.org/10.1063/1.1784891

    Article  ADS  Google Scholar 

  25. J.Y. Hsieh, S.P. Ju, S.H. Li, C.C. Hwang, Temperature dependence in nanoindentation of a metal substrate by a diamond-like tip. Phys. Rev. B. 70, 195424 (2004). https://doi.org/10.1103/PhysRevB.70.195424

    Article  ADS  Google Scholar 

  26. P.S. Wang, S.L. Lee, J.C. Lin, M.T. Jahn, Effects of solution temperature on mechanical properties of 3190 aluminum casting alloys containing trace beryllium. Journal of Materials Research 15, 2027–2035 (2000)

    Article  ADS  Google Scholar 

  27. A. Agrawal, R. Mishra, L. Ward, K. Flores, An embedded atom method potential of beryllium. Modell. Simul. Mater. Sci. Eng. 21, 085001 (2013). https://doi.org/10.1088/0965-0393/21/8/085001

    Article  ADS  Google Scholar 

  28. S.F. Cheng, M.O. Robbins, Defining contact at the atomic scale. Tribol. Lett. 39, 329 (2010). https://doi.org/10.1007/s11249-010-9682-5

    Article  Google Scholar 

  29. K. Kremer, G.S. Gr, Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 92, 5057–5086 (1990). https://doi.org/10.1063/1.458541

    Article  ADS  Google Scholar 

  30. C. Bjorkas, N. Juslin, H. Timko, K. Vortler, K. Nordlund, K. Henriksson, P. Erhart, Interatomic potentials for the Be-C-H system. J. Phys. Cond. Matter. 21, 445002 (2009)

    Article  ADS  Google Scholar 

  31. S.B, J.O.S, Beryllium (Be) - ScienceDirect. Atomic Energy Levels and Grotrian Diagrams, 301(1975)27–40

  32. H. Dai, S. Li, G. Chen, Comparison of subsurface damages on mono-crystalline silicon between traditional nanoscale machining and laser-assisted nanoscale machining via molecular dynamics simulation. Nucl Instrum Meth B 414, 61–67 (2018)

    Article  ADS  Google Scholar 

  33. Z.P. Zhe, Y, Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy. Appl. Surf. Sci. 317, 432–442 (2014). https://doi.org/10.1016/j.apsusc.2014.08.031

    Article  ADS  Google Scholar 

  34. N. Miyazaki, Y. Shiozaki, Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method. JSME Int J Ser A 39, 606–612 (1996)

    Google Scholar 

  35. J. Yang, K. Komvopoulos, A stress analysis method for molecular dynamics systems. Int. J. Solids Struct. (2020). https://doi.org/10.1016/j.ijsolstr.2020.02.003

    Article  Google Scholar 

  36. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng 18, 015012 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Key Research Projects of China (No. 2018YFB1107603), Aviation fund (No.2019ZE054005), Postdoctoral Foundation of China (No. 2020M680981), Education Department of Liaoning Province Project (No. JYT2020058), Open fund for key national defense laboratories (No. SHSYS201903), Natural Science Foundation of Liaoning Province (2021-MS-264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianjun Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Wang, W., Wang, M. et al. Influence of temperature on the cutting performance of single-crystal beryllium: a molecular dynamics simulation investigation. Appl. Phys. A 127, 811 (2021). https://doi.org/10.1007/s00339-021-04943-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04943-6

Keywords

Navigation