Skip to main content
Log in

Defining Contact at the Atomic Scale

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Contact area plays a central role in continuum theories of friction and adhesion, and there is growing interest in calculating it with atomic resolution. Molecular dynamics simulations are used to study definitions of contact area based on instantaneous and time-averaged forces or separations between atoms. Flat and spherical surfaces with different atomic geometries, adhesion, and temperatures are examined. In continuum theory, the fraction of two flat surfaces that is in contact rises sharply from zero to unity when a load is applied. This simple behavior is surprisingly difficult to reproduce with atomic scale definitions of contact. At typical temperatures, nonadhesive surfaces are held apart by a small fraction of atoms with large thermal fluctuations until the normal pressure is comparable to the ideal hardness. The contact area associated with atoms interacting at any instant rises linearly with load. Time averaging produces a monotonic increase in area with time interval that only converges to the sharp rise in continuum models for the special case of identical crystal surfaces. Except in this special case, the time-averaged contact area between adhesive surfaces also rises to full contact over a range of pressures comparable to the ideal hardness. Similar complications are encountered in defining contact areas for spherical tips. The fraction of atoms in contact rises linearly with local pressure, and the contact area based on time-averaged forces does not fit continuum theory. A simple harmonic mean-field theory provides a quantitative description of the simulation results and explains why the instantaneous forces on atoms are observed to have a universal exponential form. The results imply that continuum models of contact only apply to forces averaged over areas containing many atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Indirect long-range repulsions may be present in some cases, such as for charged surfaces in water.

  2. This was first worked out by Bélidor for spheres sliding over spheres in 1737, before atoms were universally accepted [36].

  3. Note that as in the theoretical expressions, only repulsive contributions to the force are included in the average.

  4. The rms displacement at T m is often more than 10% of the nearest-neighbor spacing due to anharmonicity. See for example [43].

References

  1. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Article  CAS  ADS  Google Scholar 

  2. Johnson, K.L.: Contact Mechanics. Cambridge, New York (1985)

    MATH  Google Scholar 

  3. Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116101 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004)

    Article  CAS  ADS  Google Scholar 

  5. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1986)

    Google Scholar 

  6. Gao, Y.F., Bower, A.F.: Elastic-plastic contact of a rough surface with weierstrass profile. Proc. R. Soc. A 462, 319–348 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. Pei, L., Hyun, S., Molinari, J.F., Robbins, M.O.: Finite element modeling of elasto-plastic contact between rough surfaces. J. Mech. Phys. Sol. 53, 2385–2409 (2005)

    Article  MATH  CAS  ADS  Google Scholar 

  8. Carpick, R.W., Salmeron, M.: Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Carpick, R.W., Ogletree, D.F., Salmeron, M.: Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997)

    Article  CAS  ADS  Google Scholar 

  10. Enachescu, M., van den Oetelaar, R.J.A., Carpick, R.W., Ogletree, D.F., Flipse, C.J.F., Salmeron, M.: An afm study of an ideally hard contact: The diamond(111)/tungsten carbide interface. Phys. Rev. Lett. 81, 1877–1880 (1998)

    Article  CAS  ADS  Google Scholar 

  11. Carpick, R.W., Ogletree, D.F., Salmeron, M.: A general equation for fitting single asperity contact area and friction measurements. J. Colloid Interface Sci. 211, 395–400 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Luan, B.Q., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Luan, B.Q.: Simulations of contact and friction: Connecting atomic and continuum descriptions. Ph.D. thesis, Johns Hopkins University, Baltimore (2006)

  14. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Mo, Y., Szlufarska, I.: Roughness picture of friction in dry nanoscale contacts. Phys. Rev. B 81(3), 035405 (2010)

    Article  ADS  Google Scholar 

  16. Knippenberg, M.T., Mikulski, P.T., Dunlap, B.I., Harrison, J.A.: Atomic contributions to friction and load for tip–self-assembled monolayers interactions. Phys. Rev. B 78(23), 235409 (2008)

    Article  ADS  Google Scholar 

  17. Harrison, J.A., Stuart, S.J., Brenner, D.W.: Atomic-scale simulation of tribological and related phenomena. In: Bhushan, B. (ed.) Handbook of Micro/Nanotribology, pp. 525–594. CRC Press, Boca Raton (1999)

    Google Scholar 

  18. Robbins, M.O., Müser, M.H.: Computer simulations of friction, lubrication and wear. In: Bhushan, B. (ed.) Handbook of Modern Tribology, pp. 717–765. CRC Press, Boca Raton (2000) (cond-mat/0001056)

  19. Brukman, M.J., Gao, G., Nemanich, R.J., Harrison, J.A.: Temperature dependence of single-asperity diamond-diamond friction elucidated using afm and md simulations. J. Phys. Chem. C 112, 9358 (2008)

    Article  CAS  Google Scholar 

  20. Pearson, J.D., Gao, G., Zikry, M.A., Harrison, J.A.: Nanoindentation of model diamond nanocomposites: Hierarchical molecular dynamics and finite-element simulations. Comp. Mat. Sci. 47, 1 (2009)

    Article  CAS  Google Scholar 

  21. Chandross, M., Lorenz, C.D., Stevens, M.J., Grest, G.S.: Simulations of nanotribology with realistic probe tip models. Langmuir 24, 1240–1246 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Yang, C., Persson, B.N.J.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. 100, 024303 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  23. Yang, C., Persson, B.N.J.: Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys. Condens. Matter 20, 215214 (2008)

    Article  ADS  Google Scholar 

  24. Luan, B.Q., Robbins, M.O.: Hybrid atomistic/continuum study of contact and friction between rough solids. Tribol. Lett. 36, 1–16 (2009)

    Article  CAS  Google Scholar 

  25. Cheng, S., Luan, B.Q., Robbins, M.O.: Contact and friction of nanoasperities: effects of adsorbed monolayers. Phys. Rev. E 81, 016102 (2010)

    Article  ADS  Google Scholar 

  26. Burnham, N.A., Colton, R.J., Pollock, H.M.: Interpretation issues in force microscopy. J. Vac. Sci. Technol. A 9, 2548–2556 (1991)

    Article  CAS  ADS  Google Scholar 

  27. Schwarz, U.D.: A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. J. Colloid Interface Sci. 261, 99–106 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Luan, B.Q., Hyun, S., Robbins, M.O., Bernstein, N.: Multiscale modeling of two dimensional rough surface contacts. In: Wahl, K.J., Huber, N., Mann, A.B., Bahr, D.F., Cheng, Y.T. (eds.) Fundamentals of Nanoindentation and Nanotribology, vol 841, pp. R74. Materials Research Society, Warrendale (2005)

    Google Scholar 

  29. Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Robbins, M.O.: Multiscale modeling of two-dimensional contacts. Phys. Rev. E 74, 046710 (2006)

    Article  CAS  ADS  Google Scholar 

  30. Campañá, C., Müser, M.H., Robbins, M.O.: Elastic contact between self-affine surfaces: Comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys. Condens. Matter 20, 354013 (2008)

    Article  Google Scholar 

  31. Hyun, S., Robbins, M.O.: Elastic contact between rough surfaces: effect of roughness at large and small wavelengths. Tribol. Int. 40, 1413–1422 (2007)

    Article  CAS  Google Scholar 

  32. Persson, B.N.J.: On the elastic energy and stress correlation in the contact between elastic solids with randomly rough surfaces. J. Phys. Condens. Matter 20, 312001 (2008)

    Article  ADS  Google Scholar 

  33. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  34. Sergici, A.O., Adams, G.G., Müftü, S.: Adhesion in the contact of a spherical indenter with a layered elastic half-space. J. Mech. Phys. Sol. 54, 1843–1861 (2006)

    Article  MATH  ADS  Google Scholar 

  35. Gao, G.T., Cannara, R.J., Carpick, R.W., Harrison, J.A.: Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using md and afm. Langmuir 23(10), 5394–5405 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. D. Dowson, History of Tribology. Longman, New York (1979)

  37. Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Academic Press, London (1991)

    Google Scholar 

  38. Campañá, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a green’s function molecular dynamics study. Europhys. Lett. 77, 38005 (2007)

    Article  ADS  Google Scholar 

  39. Dieterich, J.H., Kilgore, B.D.: Imaging surface contacts: power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256, 219–239 (1996)

    Article  ADS  Google Scholar 

  40. Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)

    Article  CAS  Google Scholar 

  41. Maugis, D.: In: Grunze, M., Kreuzer, H.J. (eds.) Adhesion and Friction, vol. 17, pp. 303. Springer, Berlin (1990)

  42. Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977)

    Article  CAS  Google Scholar 

  43. Stevens, M.J., Robbins, M.O.: Melting of Yukawa systems: a test of phenomenological melting criteria. J. Chem. Phys. 98, 2319–2324 (1993)

    Google Scholar 

  44. Krim J., Palasantzas, G.: Experimental observation of self-affine scaling and kinetic roughening at sub-micron lengthscales. Int. J. Mod. Phys. B 9, 599–632 (1995)

    Google Scholar 

Download references

Acknowledgments

This material is based upon study supported by the National Science Foundation under Grant No. DMR-0454947 and the Air Force Office of Scientific Research under Grant No. FA9550-0910232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark O. Robbins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, S., Robbins, M.O. Defining Contact at the Atomic Scale. Tribol Lett 39, 329–348 (2010). https://doi.org/10.1007/s11249-010-9682-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-010-9682-5

Keywords

Navigation