Skip to main content
Log in

Fabrication of a prototype of bumper beam by single point incremental forming of laser welded tailored blank and characterization of its quasi-static crushing performance

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

A bumper beam prototype was fabricated in the present work by deforming laser welded tailored blank (LWTB) of extra deep drawing (EDD) steels of thicknesses 1.6 mm and 1 mm through a single point incremental forming (SPIF) process. Initially, a finite element (FE) model of SPIF was developed incorporating weld zone properties, material anisotropy and experimental fracture forming limit diagram as a damage model to understand the geometrical profile and strain evolution in the prototype. Subsequently, crushing performance was evaluated numerically at three different locations along the length of the LWTB prototype using a hemispherical indenter and compared with that of the prototype of EDD 1.6 mm (BM). Results showed that the presence of thinner sections in the LWTB prototype altered the deformation mode, and the load was distributed more uniformly compared to the BM prototype during crushing. The numerically predicted deformation modes and crushing load–displacement response were validated at mid-section with experimental findings. It was concluded that the application of non-associated flow rule-based Stoughton model improved the FE-predicted results in comparison to Hill48 and YLD89 models. Approximately 9.33% and 11.28% increase in the crushing force efficiency and specific energy absorption was achieved in the LWTB prototype compared to the BM prototype. These findings revealed that the SPIF process could be applied in developing lightweight bumper beams with improved crushing performance using LWTB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data will be made available upon request.

References

  1. Duc-Toan N, Seung-Han Y, Dong-Won J, Tae-Hoon C, Young-Suk K. Incremental sheet metal forming: Numerical simulation and rapid prototyping process to make an automobile white-body. Steel Res Int. 2011;82:795–805. https://doi.org/10.1002/srin.201000284.

    Article  Google Scholar 

  2. Behera AK, de Sousa RA, Ingarao G, Oleksik V. Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015. J Manuf Process. 2017;27:37–62. https://doi.org/10.1016/j.jmapro.2017.03.014.

    Article  Google Scholar 

  3. Duflou JR, Habraken AM, Cao J, Malhotra R, Bambach M, Adams D, Vanhove H, Mohammadi A, Jeswiet J. Single point incremental forming: state-of-the-art and prospects. Int J Mater Form. 2018;11:743–73. https://doi.org/10.1007/s12289-017-1387-y.

    Article  Google Scholar 

  4. Silva MB, Skjoedt M, Atkins AG, Bay N, Martins PAF. Single-point incremental forming and formability—failure diagrams. J Strain Anal Eng Des. 2008;43:15–35. https://doi.org/10.1243/03093247JSA340.

    Article  Google Scholar 

  5. Katiyar BS, Panda SK, Saha P. Experimental and numerical analyses on crushing behaviour of drawn cups of laser welded tailored blanks under axial loading. Arch Civ Mech Eng. 2022;22:1–15. https://doi.org/10.1007/s43452-022-00537-y.

    Article  Google Scholar 

  6. Xu F, Sun G, Li G, Li Q. Experimental study on crashworthiness of tailor-welded blank (TWB) thin-walled high-strength steel (HSS) tubular structures. Thin-Wall Struct. 2014;74:12–27. https://doi.org/10.1016/j.tws.2013.08.021.

    Article  Google Scholar 

  7. Katiyar BS, Panda SK, Saha P. Quasi-static crushing behavior of stretch formed domes of laser welded tailored blanks. Thin-Wall Struct. 2021;159: 107288. https://doi.org/10.1016/j.tws.2020.107288.

    Article  Google Scholar 

  8. Ahmetoglu MA, Brouwers D, Shulkin L, Taupin L, Kinzel GL, Altan T. Deep drawing of round cups from tailor-welded blanks. J Mater Process Tech. 1995;53:684–94. https://doi.org/10.1016/0924-0136(94)01767-U.

    Article  Google Scholar 

  9. Bandyopadhyay K, Panda SK, Saha P, Padmanabham G. Limiting drawing ratio and deep drawing behavior of dual phase steel tailor welded blanks: FE simulation and experimental validation. J Mater Process Technol. 2015;217:48–64. https://doi.org/10.1016/j.jmatprotec.2014.10.022.

    Article  Google Scholar 

  10. Basak S, Katiyar BS, Orozco-Gonzalez P, Baltazar-Hernandez VH, Arora KS, Panda SK. Microstructure, forming limit diagram, and strain distribution of pre-strained DP-IF steel tailor–welded blank for auto body application. Int J Adv Manuf Technol. 2019;104:1749–67. https://doi.org/10.1007/s00170-019-03938-1.

    Article  Google Scholar 

  11. Heo YM, Wang SH, Kim HY, Seo DG. The effect of the drawbead dimensions on the weld-line movements in the deep drawing of tailor-welded blanks. J Mater Process Technol. 2001;113:686–91. https://doi.org/10.1016/S0924-0136(01)00672-0.

    Article  Google Scholar 

  12. Kumar G, Maji K. Forming limit analysis of friction stir tailor welded AA5083 and AA7075 sheets in single point incremental forming. Int J Mater Form. 2022. https://doi.org/10.1007/s12289-022-01675-7.

    Article  Google Scholar 

  13. Ebrahimzadeh P, Baseri H, Mirnia MJ. Formability of aluminum 5083 friction stir welded blank in two-point incremental forming process. Proc Inst Mech Eng Part E J Process Mech Eng. 2018;232:267–80. https://doi.org/10.1177/0954408917692370.

    Article  Google Scholar 

  14. Silva MB, Skjoedt M, Vilaça P, Bay N, Martins PAF. Single point incremental forming of tailored blanks produced by friction stir welding. J Mater Process Technol. 2009;209:811–20. https://doi.org/10.1016/j.jmatprotec.2008.02.057.

    Article  Google Scholar 

  15. Davoodi MM, Sapuan SM, Aidy A, Abu Osman NA, Oshkour AA, Wan Abas WAB. Development process of new bumper beam for passenger car: a review. Mater Des. 2012;40:304–13. https://doi.org/10.1016/j.matdes.2012.03.060.

    Article  Google Scholar 

  16. Múnera DD, Pinard F, Lacassin L. Very and ultra high strength steels based tailored welded blanks: a step further towards crashworthiness improvement. SAE Tech Pap. 2006;115:796–804. https://doi.org/10.4271/2006-01-1213.

    Article  Google Scholar 

  17. Xu F, Wang C. Dynamic axial crashing of tailor-welded blanks (TWBs) thin-walled structures with top-hat shaped section. Adv Eng Softw. 2016;96:70–82. https://doi.org/10.1016/j.advengsoft.2016.02.003.

    Article  Google Scholar 

  18. Saunders FI, Wagoner RH. Forming of tailor-welded blanks. Metall Mater Trans A. 1996;27:2605–16. https://doi.org/10.1007/BF02652354.

    Article  Google Scholar 

  19. Zadpoor AA, Sinke J, Benedictus R. Finite element modeling and failure prediction of friction stir welded blanks. Mater Des. 2009;30:1423–34. https://doi.org/10.1016/j.matdes.2008.08.018.

    Article  Google Scholar 

  20. Gaied S, Roelandt JM, Pinard F, Schmit F, Balabane M. Experimental and numerical assessment of Tailor-Welded Blanks formability. J Mater Process Technol. 2009;209:387–95. https://doi.org/10.1016/j.jmatprotec.2008.02.031.

    Article  Google Scholar 

  21. Hariharan K, Nguyen NT, Chakraborti N, Lee MG, Barlat F. Multi-objective genetic algorithm to optimize variable drawbead geometry for tailor welded blanks made of dissimilar steels. Steel Res Int. 2014;85:1597–607. https://doi.org/10.1002/srin.201300471.

    Article  Google Scholar 

  22. Kohar CP, Mohammadi M, Mishra RK, Inal K. The effects of the yield surface curvature and anisotropy constants on the axial crush response of circular crush tubes. Thin-Wall Struct. 2016;106:28–50. https://doi.org/10.1016/j.tws.2016.04.021.

    Article  Google Scholar 

  23. Ghorbel O, Koubaa S, Mars J, Wali M, Dammak F. Non associated-anisotropic plasticity model fully coupled with isotropic ductile damage for sheet metal forming applications. Int J Solids Struct. 2019;166:96–111. https://doi.org/10.1016/j.ijsolstr.2019.02.010.

    Article  Google Scholar 

  24. Safaei M, Zang SL, Lee MG, De Waele W. Evaluation of anisotropic constitutive models: mixed anisotropic hardening and non-associated flow rule approach. Int J Mech Sci. 2013;73:53–68. https://doi.org/10.1016/j.ijmecsci.2013.04.003.

    Article  Google Scholar 

  25. Stoughton TB. A non-associated flow rule for sheet metal forming. Int J Plast. 2002;18:687–714. https://doi.org/10.1016/S0749-6419(01)00053-5.

    Article  Google Scholar 

  26. Stoughton TB, Yoon JW. A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming. Int J Plast. 2004;20:705–31. https://doi.org/10.1016/S0749-6419(03)00079-2.

    Article  Google Scholar 

  27. Sindrey DA. Steel bumper systems for passenger cars and light trucks. SAE Tech Pap. 1999;108:875–83. https://doi.org/10.4271/1999-01-1007.

    Article  Google Scholar 

  28. Öztürk İ. Design and optimisation of hybrid material bumper beams under impact loading. Int J Crashworth. 2022;27:835–46. https://doi.org/10.1080/13588265.2020.1858626.

    Article  Google Scholar 

  29. Banabic D. Plastic behaviour of sheet metal. In: Sugan R, editor. Sheet met. form. process. Berlin: Springer; 2010. p. 27–140. https://doi.org/10.1007/978-3-540-88113-1_2.

    Chapter  Google Scholar 

  30. Barlat F, Yoon JW, Cazacu O. On linear transformations of stress tensors for the description of plastic anisotropy. Int J Plast. 2007;23:876–96. https://doi.org/10.1016/j.ijplas.2006.10.001.

    Article  Google Scholar 

  31. Banabic D, Aretz H, Comsa DS, Paraianu L. An improved analytical description of orthotropy in metallic sheets. Int J Plast. 2005;21:493–512. https://doi.org/10.1016/j.ijplas.2004.04.003.

    Article  Google Scholar 

  32. Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE. Linear transfomation-based anisotropic yield functions. Int J Plast. 2005;21:1009–39. https://doi.org/10.1016/j.ijplas.2004.06.004.

    Article  Google Scholar 

  33. Yoon JW, Yang DY, Chung K, Barlat F. General elasto-plastic finite element formulation based on incremental deformation theory for planar anisotropy and its application to sheet metal forming. Int J Plast. 1999;15:35–67. https://doi.org/10.1016/S0749-6419(98)00059-X.

    Article  Google Scholar 

  34. Spitzig WA, Richmond O. The effect of pressure on the flow stress of metals. Acta Metall. 1984;32:457–63. https://doi.org/10.1016/0001-6160(84)90119-6.

    Article  Google Scholar 

  35. Lee JH. Research note on a simple model for pressure-sensitive strain-hardening materials. Int J Plast. 1988;4:265–78. https://doi.org/10.1016/0749-6419(88)90014-9.

    Article  Google Scholar 

  36. Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond Ser A Math Phys Sci. 1948;193:281–97. https://doi.org/10.1098/rspa.1948.0045.

    Article  MathSciNet  Google Scholar 

  37. Barlat F, Lian K. Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast. 1989;5:51–66. https://doi.org/10.1016/0749-6419(89)90019-3.

    Article  Google Scholar 

  38. ASTM E8, E8M. Standard test methods for tension testing of metallic materials. West Conshohocken: ASTM international; 2010. p. 1–27. https://doi.org/10.1520/E0008_E0008M-09.

    Book  Google Scholar 

  39. ASTM E-517. Standard Test Method for Plastic Strain Ratio r for Sheet Metal. West Conshohocken: ASTM international; 2010. p. 1–8. https://doi.org/10.1520/E0517-00R10.

    Book  Google Scholar 

  40. Katiyar BS, Panda SK, Saha P. Effect of circular hole discontinuities on crushing characteristics of combined geometry shells of tailor welded blanks. J Mater Eng Perform. 2023. https://doi.org/10.1007/s11665-023-08157-0.

    Article  Google Scholar 

  41. Basak S, Panda SK. Implementation of Yld96 anisotropy plasticity theory for estimation of polar effective plastic strain based failure limit of pre-strained thin steels. Thin-Wall Struct. 2018;126:26–37. https://doi.org/10.1016/j.tws.2017.04.015.

    Article  Google Scholar 

  42. Suresh K, Regalla SP. Effect of time scaling and mass scaling in numerical simulation of incremental forming. Appl Mech Mater. 2014;612:105–10. https://doi.org/10.4028/www.scientific.net/AMM.612.105.

    Article  Google Scholar 

  43. Suresh K, Bagade SD, Regalla SP. Deformation behavior of extra deep drawing steel in single-point incremental forming. Mater Manuf Process. 2015;30:1202–9. https://doi.org/10.1080/10426914.2014.994755.

    Article  Google Scholar 

  44. Basak S, Prasad KS, Sidpara AM, Panda SK. Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses. Int J Mater Form. 2019;12:623–42. https://doi.org/10.1007/s12289-018-1439-y.

    Article  Google Scholar 

  45. Pandre S, Morchhale A, Mahalle G, Kotkunde N, Suresh K, Singh SK. Fracture limit analysis of DP590 steel using single point incremental forming: experimental approach, theoretical modeling and microstructural evolution. Arch Civ Mech Eng. 2021;21:95. https://doi.org/10.1007/s43452-021-00243-1.

    Article  Google Scholar 

  46. Hussain G, Alkahtani M. Analysis of wall curling in incremental forming of a sheet metal: role of residual stresses, stretching force and process conditions. J Mater Res Technol. 2021;11:1548–58. https://doi.org/10.1016/j.jmrt.2021.01.088.

    Article  Google Scholar 

  47. Murugesan M, Youn HW, Yu JH, Chung W, Lee CW. Investigation of forming parameters influence on pillow defect in a new vacuum-assisted incremental sheet forming process. Int J Adv Manuf Technol. 2023;127:5531–51. https://doi.org/10.1007/s00170-023-11854-8.

    Article  Google Scholar 

  48. Ghasemabadian MA, Kadkhodayan M, Altenhof W, Bondy M, Magliaro J. An experimental study on the energy absorption characteristics of single- and bi-layer cups under quasi-static loading. Int J Crashworth. 2018. https://doi.org/10.1080/13588265.2018.1433348.

    Article  Google Scholar 

  49. Kokkula S, Langseth M, Hopperstad OS, Lademo OG. Offset impact behaviour of bumper beam-longitudinal systems: Experimental investigations. Int J Crashworth. 2006;11:299–316. https://doi.org/10.1533/ijcr.2005.0122.

    Article  Google Scholar 

  50. Sun G, Tian J, Liu T, Yan X, Huang X. Crashworthiness optimization of automotive parts with tailor rolled blank. Eng Struct. 2018;169:201–15. https://doi.org/10.1016/j.engstruct.2018.05.050.

    Article  Google Scholar 

  51. Hsu SS, Jones N. Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes. Int J Crashworth. 2004;9:195–217. https://doi.org/10.1533/ijcr.2004.0282.

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BSK, SKP, PS; Methodology: BSK; Formal analysis and investigation: BSK; Writing—original draft preparation: BSK; Writing—review and editing: BSK, SKP, PS; Resources: SKP, PS; Supervision: SKP, PS.

Corresponding author

Correspondence to Sushanta Kumar Panda.

Ethics declarations

Conflict of interest

There are no potential conflicts of interest involved in the present study.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katiyar, B.S., Panda, S.K. & Saha, P. Fabrication of a prototype of bumper beam by single point incremental forming of laser welded tailored blank and characterization of its quasi-static crushing performance. Arch. Civ. Mech. Eng. 24, 141 (2024). https://doi.org/10.1007/s43452-024-00949-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00949-y

Keywords

Navigation