Skip to main content
Log in

DNA hybridization detection using graphene-MoSe2–Ag heterostructure-based surface plasmon resonance biosensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

As detection of specific deoxyribonucleic acid (DNA) sequences is of great importance in diagnosing many fatal and genetic diseases, there have been renewed interests in designing highly sensitive label-free DNA detection platforms. This paper presents a molybdenum diselenide (MoSe2)-graphene hybrid structure-based surface plasmon resonance (SPR) biosensor with capability of detecting single-nucleotide polymorphism (SNP) and DNA hybridization events. Because of its better absorption capability the MoSe2 layer provides strong excitation energy which induces huge charge carrier transfer while the graphene layer serves as a biomolecular recognition element to capture bio-analytes through π-stacking force. The silver (Ag) layer is attached to the BK7 prism by a very thin titanium (Ti) adhesion film which also serves as oxidization and corrosion protection layer. The biosensor is optimized by numerical modeling and the optimum structure has an excellent sensitivity of 215.5°/RIU which is better than other reported works. It has been demonstrated that when target DNAs are attached to the probe DNAs pre-immobilized on the sensing surface the change of SPR angle is insignificant for mismatched DNA strands while it is highly prominent for complementary DNA strands. Thus, the proposed sensor can effectively distinguish hybridization event and SNP by examining the level of changes in resonance angle and reflectance spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. J. Homola, M. Piliarik, Surf. Plasmon Reson. (SPR) Sens. 4, 45–67 (2006). https://doi.org/10.1007/5346_014

    Article  ADS  Google Scholar 

  2. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators, B Chem. 54(1), 3–15 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9

    Article  Google Scholar 

  3. J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377(3), 528–539 (2003). https://doi.org/10.1007/s00216-003-2101-0

    Article  Google Scholar 

  4. J. Majka, C. Speck, Analysis of protein-DNA interactions using surface plasmon resonance. Adv. Biochem. Eng. Biotechnol. 104, 13–36 (2006). https://doi.org/10.1007/10_026

    Article  Google Scholar 

  5. F. Wei, P.B. Lillehoj, C.M. Ho, DNA diagnostics: nanotechnology-enhanced electrochemical detection of nucleic acids. Pediatr. Res. 67(5), 458–468 (2010). https://doi.org/10.1203/PDR.0b013e3181d361c3

    Article  Google Scholar 

  6. C. Te Lin et al., Label-free electrical detection of DNA hybridization on graphene using Hall effect measurements: revisiting the sensing mechanism. Adv. Funct. Mater. 23(18), 2301–2307 (2013). https://doi.org/10.1002/adfm.201202672

    Article  Google Scholar 

  7. H.H. Nguyen, J. Park, S. Kang, M. Kim, Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Switzerland) 15(5), 10481–10510 (2015). https://doi.org/10.3390/s150510481

    Article  ADS  Google Scholar 

  8. A.V. Kabashin et al., Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8(11), 867–871 (2009). https://doi.org/10.1038/nmat2546

    Article  ADS  Google Scholar 

  9. L. Guo, J.A. Jackman, H.H. Yang, P. Chen, N.J. Cho, D.H. Kim, Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 10(2), 213–239 (2015). https://doi.org/10.1016/j.nantod.2015.02.007

    Article  Google Scholar 

  10. A. Shalabney, I. Abdulhalim, Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 5(4), 571–606 (2011). https://doi.org/10.1002/lpor.201000009

    Article  ADS  Google Scholar 

  11. L. Wu, H.S. Chu, W.S. Koh, E.P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Expr. 18(14), 14395 (2010). https://doi.org/10.1364/oe.18.014395

    Article  ADS  Google Scholar 

  12. S.H. Choi, Y.L. Kim, K.M. Byun, Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Expr. 19(2), 458 (2011). https://doi.org/10.1364/oe.19.000458

    Article  ADS  Google Scholar 

  13. X. Dong, Y. Shi, W. Huang, P. Chen, L.J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22(14), 1649–1653 (2010). https://doi.org/10.1002/adma.200903645

    Article  Google Scholar 

  14. P.T.K. Loan, W. Zhang, C. Te Lin, K.H. Wei, L.J. Li, C.H. Chen, Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation. Adv. Mater. 26(28), 4838–4844 (2014). https://doi.org/10.1002/adma.201401084

    Article  Google Scholar 

  15. Y.V. Morozov, M. Kuno, Optical constants and dynamic conductivities of single layer MoS2, MoSe2, and WSe2. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4929700

    Article  Google Scholar 

  16. Q. Ouyang et al., Two-dimensional transition metal dichalcogenide enhanced phase-sensitive plasmonic biosensors: theoretical insight. J. Phys. Chem. C 121(11), 6282–6289 (2017). https://doi.org/10.1021/acs.jpcc.6b12858

    Article  Google Scholar 

  17. A.K. Mishra, S.K. Mishra, R.K. Verma, Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J. Phys. Chem. C 120(5), 2893–2900 (2016). https://doi.org/10.1021/acs.jpcc.5b08955

    Article  Google Scholar 

  18. M.S. Rahman, M.S. Anower, M.R. Hasan, M.B. Hossain, M.I. Haque, Design and numerical analysis of highly sensitive Au–MoS2-graphene-based hybrid surface plasmon resonance biosensor. Opt. Commun. 396, 36–43 (2017). https://doi.org/10.1016/j.optcom.2017.03.035

    Article  ADS  Google Scholar 

  19. L. Wu et al., Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure. J. Light. Technol. 35(1), 82–87 (2017). https://doi.org/10.1109/JLT.2016.2624982

    Article  ADS  Google Scholar 

  20. J.B. Maurya, Y.K. Prajapati, A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-graphene. Opt. Quantum Electron (2016). https://doi.org/10.1007/s11082-016-0562-6

    Article  Google Scholar 

  21. C. Zhu, Z. Zeng, H. Li, F. Li, C. Fan, H. Zhang, Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 135(16), 5998–6001 (2013). https://doi.org/10.1021/ja4019572

    Article  Google Scholar 

  22. M.B. Hossain, Numerical modeling of MoS2–graphene bilayer-based high-performance surface plasmon resonance sensor: structure optimization for DNA hybridization. Opt. Eng. (2020). https://doi.org/10.1117/1.oe.59.10.105105

    Article  Google Scholar 

  23. B. Meshginqalam, J. Barvestani, Performance enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization. IEEE Sens. J. 18(18), 7537–7543 (2018). https://doi.org/10.1109/JSEN.2018.2861829

    Article  ADS  Google Scholar 

  24. S. Tongay et al., Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13(6), 2831–2836 (2013). https://doi.org/10.1021/nl4011172

    Article  ADS  Google Scholar 

  25. H. Chen et al., Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas. Sci. Rep. (2016). https://doi.org/10.1038/srep22296

    Article  Google Scholar 

  26. H.V. Han et al., Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano 10(1), 1454–1461 (2016). https://doi.org/10.1021/acsnano.5b06960

    Article  Google Scholar 

  27. P. Tonndorf et al., Photoluminescence emission and Raman response of monolayer MoS_2, MoSe_2, and WSe_2. Opt. Expr. 21(4), 4908 (2013). https://doi.org/10.1364/oe.21.004908

    Article  ADS  Google Scholar 

  28. H.J. Reich, R.J. Hondal, Why nature chose selenium. ACS Chem. Biol. 11(4), 821–841 (2016). https://doi.org/10.1021/acschembio.6b00031

    Article  Google Scholar 

  29. Y. Luo et al., Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer. Opt. Expr. 26(26), 34250 (2018). https://doi.org/10.1364/oe.26.034250

    Article  ADS  Google Scholar 

  30. K. Liu et al., MoSe2–Au based sensitivity enhanced optical fiber surface plasmon resonance biosensor for detection of goat-anti-rabbit IgG. IEEE Access (2020). https://doi.org/10.1109/ACCESS.2019.2961751

    Article  Google Scholar 

  31. A.K. Sharma, B.D. Gupta, On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys (2007). https://doi.org/10.1063/1.2721779

    Article  Google Scholar 

  32. S. Zeng et al., Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators, B Chem 207, 801–810 (2015). https://doi.org/10.1016/j.snb.2014.10.124

    Article  Google Scholar 

  33. E. D. Palik, “Handbook of optical constants of solids,” in Academic Press, vol. 3, 1998

  34. B.D. Gupta, A.K. Sharma, Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study. Sens. Actuators, B Chem. 107(1), 40–46 (2005). https://doi.org/10.1016/j.snb.2004.08.030

    Article  Google Scholar 

  35. M. Bruna, S. Borini, “Optical constants of graphene layers in the visible range. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3073717

    Article  Google Scholar 

  36. J. Hölzl and F. K. Schulte, “Work function of metals,” in Solid surface physics, 1979, pp. 1–150

  37. T. Shimada, F.S. Ohuchi, Work function and photothreshold of layered metal dichalcogenides. Jpn. J. Appl. Phys. 33(5R), 2696 (1994). https://doi.org/10.1143/JJAP.33.2696

    Article  ADS  Google Scholar 

  38. S.M. Song, J.K. Park, O.J. Sul, B.J. Cho, Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett. 12(8), 3887–3892 (2012). https://doi.org/10.1021/nl300266p

    Article  ADS  Google Scholar 

  39. L. Britnell et al., Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311–1314 (2013). https://doi.org/10.1126/science.1235547

    Article  ADS  Google Scholar 

  40. C.H. Chen et al., A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording. Nanomed. Nanotechnol. Biol. Med. 9(5), 600–604 (2013). https://doi.org/10.1016/j.nano.2012.12.004

    Article  Google Scholar 

  41. H.L. Liu, C.C. Shen, S.H. Su, C.L. Hsu, M.Y. Li, L.J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4901836

    Article  Google Scholar 

  42. G.M. Hale, M.R. Querry, Optical constants of water in the 200-nm–200-μm wavelength region. Appl. Opt. 12(3), 555 (1973). https://doi.org/10.1364/ao.12.000555

    Article  ADS  Google Scholar 

  43. Q. Ouyang et al., “Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. (2016). https://doi.org/10.1038/srep28190

    Article  Google Scholar 

  44. P.K. Maharana, T. Srivastava, R. Jha, On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared. Plasmonics 9(5), 1113–1120 (2014). https://doi.org/10.1007/s11468-014-9721-4

    Article  Google Scholar 

  45. J.Q. Hu, X.H. Shi, S.Q. Wu, K.M. Ho, Z.Z. Zhu, “Dependence of electronic and optical properties of MoS2 multilayers on the interlayer coupling and van hove singularity. Nanoscale Res. Lett. (2019). https://doi.org/10.1186/s11671-019-3105-9

    Article  Google Scholar 

  46. A. Kumara, P.K. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct bandgap semiconductors. Eur. Phys. (2012). https://doi.org/10.1140/epjb/e2012-30070-x

    Article  Google Scholar 

  47. L. Wu et al., Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators, B Chem. 249, 542–548 (2017). https://doi.org/10.1016/j.snb.2017.04.110

    Article  Google Scholar 

  48. J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. (2014). https://doi.org/10.1038/ncomms5475

    Article  Google Scholar 

  49. X.C. Yuan, B.H. Ong, Y.G. Tan, D.W. Zhang, R. Irawan, S.C. Tjin, Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers. J. Opt. A Pure Appl. Opt. 8(11), 959–963 (2006). https://doi.org/10.1088/1464-4258/8/11/005

    Article  ADS  Google Scholar 

  50. P.K. Maharana, P. Padhy, R. Jha, On the field enhancement and performance of an ultra-stable SPR biosensor based on graphene. IEEE Photonics Technol. Lett. 25(22), 2156–2159 (2013). https://doi.org/10.1109/LPT.2013.2281453

    Article  ADS  Google Scholar 

  51. S. Pal, A. Verma, S. Raikwar, Y.K. Prajapati, J.P. Saini, “Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-1804-1

    Article  Google Scholar 

  52. A. Verma, A. Prakash, R. Tripathi, Performance analysis of graphene-based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Opt. Quantum Electron. 47(5), 1197–1205 (2015). https://doi.org/10.1007/s11082-014-9976-1

    Article  Google Scholar 

  53. D.T. Nurrohman, N.-F. Chiu, Surface plasmon resonance biosensor performance analysis on 2D material based on graphene and transition metal dichalcogenides. ECS J. Solid State Sci. Technol. 9(11), 115023 (2020). https://doi.org/10.1149/2162-8777/abb419

    Article  ADS  Google Scholar 

  54. L. Diéauez, N. Darwish, M. Mir, E. Martínez, M. Moreno, J. Samitier, Effect of the refractive index of buffer solutions in evanescent optical biosensors. Sens. Lett. 7(5), 851–855 (2009). https://doi.org/10.1166/sl.2009.1161

    Article  Google Scholar 

  55. V. Ball, J.J. Ramsden, Buffer dependence of refractive index increments of protein solutions. Biopolymers 46(7), 489–492 (1998). https://doi.org/10.1002/(SICI)1097-0282(199812)46:7%3c489::AID-BIP6%3e3.3.CO;2-5

    Article  Google Scholar 

  56. H. Zhao, P.H. Brown, P. Schuck, On the distribution of protein refractive index increments. Biophys. J. 100(9), 2309–2317 (2011). https://doi.org/10.1016/j.bpj.2011.03.004

    Article  ADS  Google Scholar 

  57. G.E. Perlmann, L.G. Longsworth, The specific refractive increment of some purified proteins. J. Am. Chem. Soc. 70(8), 2719–2724 (1948). https://doi.org/10.1021/ja01188a027

    Article  Google Scholar 

  58. J.B. Maurya, Y.K. Prajapati, Experimental demonstration of DNA hybridization using graphene-based plasmonic sensor chip. J. Light. Technol. 38(18), 5191–5198 (2020). https://doi.org/10.1109/JLT.2020.2998138

    Article  ADS  Google Scholar 

  59. Y. Huang et al., Development of a portable SPR sensor for nucleic acid detection. Micromachines (2020). https://doi.org/10.3390/mi11050526

    Article  Google Scholar 

  60. S. Wang, Y. Zhang, Y. Ning, G.J. Zhang, A WS2 nanosheet-based platform for fluorescent DNA detection via PNA-DNA hybridization. Analyst 140(2), 434–439 (2015). https://doi.org/10.1039/c4an01738b

    Article  ADS  Google Scholar 

  61. A.H. Loo, A. Bonanni, A. Ambrosi, M. Pumera, Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection. Nanoscale 6(20), 11971–11975 (2014). https://doi.org/10.1039/c4nr03795b

    Article  ADS  Google Scholar 

  62. N.H. Kim, M. Choi, T.W. Kim, W. Choi, S.Y. Park, K.M. Byun, Sensitivity and stability enhancement of surface plasmon resonance biosensors based on a large-area Ag/MoS2 substrate. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19081894

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

TH: Conceptualization, methodology, validation, formal analysis, investigation, writing—original draft. HKR: Conceptualization, methodology, supervision, writing—review and editing.

Corresponding author

Correspondence to Hasan Khaled Rouf.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, T., Rouf, H.K. DNA hybridization detection using graphene-MoSe2–Ag heterostructure-based surface plasmon resonance biosensor. Appl. Phys. A 127, 759 (2021). https://doi.org/10.1007/s00339-021-04888-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04888-w

Keywords

Navigation