Skip to main content
Log in

Sensitivity enhancement with anti-reflection coating of silicon nitride (Si3N4) layer in silver-based Surface Plasmon Resonance (SPR) sensor for sensing of DNA hybridization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work presents a highly sensitive silver (Ag) based Surface Plasmon Resonance (SPR) sensor with graphene-coated over Silicon nitride (Si3N4) for sensing of Deoxyribonucleic acid (DNA) hybridization. The design consists of five layers namely Ag, Si3N4, graphene, and sensing medium along with BK7 glass prism that couple light at the metal–dielectric interface. The performance of the present structure has been evaluated using the angular interrogation method. The present investigation reveals the difference in complementary DNA strands and mismatched DNA strands as well as single-nucleotide polymorphisms (SNP) event by examining the variation of resonance angle in the reflectivity spectrum. The performance of the present structure is compared with the contemporary structures and found better than existing sensors. Therefore, the proposed structure is suitable in the biochemical field for the detection of biomolecules interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Zeng, D. Baillargeat, H.-P. Ho, K.-T. Yong, Chem. Soc. Rev. 43, 3426 (2014)

    Article  Google Scholar 

  2. S. Pal, Y.K. Prajapati, J.P. Saini, Opt. Rev. 27, 57 (2020)

    Article  Google Scholar 

  3. M. Çalışır, M. Bakhshpour, H. Yavuz, A. Denizli, Sens. Actuators B: Chemical 306, 127561 (2020)

    Article  Google Scholar 

  4. H.-S. Lee, T.-Y. Seong, W.M. Kim, I. Kim, G.-W. Hwang, W.S. Leea, K.-S. Lee, Sensors and Actuators B: Chemical 266, 311 (2018)

    Article  Google Scholar 

  5. K. Tamersit, F. Djeffal, IEEE Sens. J. 16, 4180 (2016)

    Article  ADS  Google Scholar 

  6. H. Karimi, R. Yusof, R. Rahmani, H. Hosseinpour, M.T. Ahmadi, Nanoscale Res Lett 9, 71 (2014)

    Article  ADS  Google Scholar 

  7. A. Shalabney, I. Abdulhalim, Sens. Actuators, A 159, 24 (2010)

    Article  Google Scholar 

  8. H. Fu, S. Zhang, H. Chen, J. Weng, IEEE Sens. J. 15, 5478 (2015)

    Article  ADS  Google Scholar 

  9. E. Kretschmann, H. Raether, Zeitschrift für Naturforschung A 23, 2135 (1968)

    Article  ADS  Google Scholar 

  10. N. Mudgal, A. Saharia, A. Agarwal, J. Ali, P. Yupapin, G. Singh, Opt. Quant. Electron. 52, 307 (2020)

    Article  Google Scholar 

  11. J. Banerjee, M. Ray, Sens. Actuators B: Chemical 281, 520 (2019)

    Article  Google Scholar 

  12. Q. Ouyang, S. Zeng, X.-Q. Dinh, P. Coquet, K.-T. Yong, Procedia Eng. 140, 134 (2016)

    Article  Google Scholar 

  13. A.K. Sharma, B. Kaur, V.A. Popescu, Opt. Mater. 102, 109824 (2020)

    Article  Google Scholar 

  14. S. Pal, A. Verma, S. Raikwar, Y.K. Prajapati, J.P. Saini, Appl. Phys. A 124, 394 (2018)

    Article  ADS  Google Scholar 

  15. B. Meshginqalam, J. Barvestani, Opt. Mater. 86, 119 (2018)

    Article  ADS  Google Scholar 

  16. A. Panda, P.D. Pukhrambam, G. Keiser, Appl. Phys. A 126, 153 (2020)

    Article  ADS  Google Scholar 

  17. C.M. Das, Q. Ouyang, L. Kang, Y. Guo, X.-Q. Dinh, P. Coquet, K.-T. Yong, Photonics Nanostruct. Fundam. Appl. 38, 100760 (2020)

    Article  Google Scholar 

  18. R. Kumar, S. Pal, A. Verma, Y.K. Prajapati, J.P. Saini, Superlattices Microstruct. 145, 106591 (2020)

    Article  Google Scholar 

  19. A. Srivastava, A. Verma, R. Das, Y.K. Prajapati, Optik 203, 163430 (2020)

    Article  ADS  Google Scholar 

  20. Y.K. Prajapati, A. Srivastava, Superlattices Microstruct. 129, 152 (2019)

    Article  ADS  Google Scholar 

  21. A. Kumar, A.K. Yadav, A.S. Kushwaha, S.K. Srivastava, Sen. Actuators 2, 100015 (2020)

    Google Scholar 

  22. O. Blázquez, J. López-Vidrier, S. Hernández, J. Montserrat, B. Garrido, Energy Procedia 44, 145 (2014)

    Article  Google Scholar 

  23. S.-L. Ku, C.-C. Lee, Opt. Mater. 32, 956 (2010)

    Article  ADS  Google Scholar 

  24. M.B. Hossain, M.M. Rana, Sensor Letters 14, 145 (2016)

    Article  Google Scholar 

  25. A. Keshavarz, S. Zangenehzadeh, A. Hatef, Appl. Nanosci. 10, 1465 (2020)

    Article  ADS  Google Scholar 

  26. S. Neuville, Carbon structure Analysis with Differentiated Raman spectroscopy (Refined Raman Spectroscopy fundamentals for improved Carbon Material Engineering), (LAMBERT ACADEMIC PRESS, 2014)

  27. S. Neuville, Surf. Coat. Technol. 206, 703 (2011)

    Article  Google Scholar 

  28. S. Neuville, Micromachines 10(8), 539 (2019)

    Article  Google Scholar 

  29. Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan, IEEE Photon J 8, 1 (2016)

    Google Scholar 

  30. P.B. Johnson, R.W. Christy, Phys Rev B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  31. K. Luke, Y. Okawachi, M.R.E. Lamont, A.L. Gaeta, M. Lipson, Opt. Lett. 40, 4823 (2015)

    Article  ADS  Google Scholar 

  32. H. Vahed, C. Nadri, Opt. Mater. 88, 161 (2019)

    Article  ADS  Google Scholar 

  33. M.S. Rahman, M.R. Hasan, K.A. Rikta, M.S. Anower, Opt. Mater. 75, 567 (2018)

    Article  ADS  Google Scholar 

  34. T. Tumolo, L. Angnes, M.S. Baptista, Anal. Biochem. 333, 273 (2004)

    Article  Google Scholar 

  35. P.K. Maharana, R. Jha, P. Padhy, Sens. Actuators B 207, 117 (2015)

    Article  Google Scholar 

  36. N. Mudgal, P. Yupapin, J. Ali, G. Singh, Plasmonics (2020). https://doi.org/10.1007/s11468-020-01146-2

    Article  Google Scholar 

  37. M.S. Rahman, M.S. Anower, M.R. Hasan, K.A. Rikta, Sensor Letters 15, 510 (2017)

    Article  Google Scholar 

  38. P. Sun, M. Wang, L. Liu, L. Jiao, W. Du, F. Xia, M. Liu, W. Kong, L. Dong, M. Yun, Appl. Surf. Sci. 475, 342 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank, ECE Department, Malaviya National Institute of Technology, Jaipur for infrastructure support to accomplish this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mudgal.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudgal, N., Saharia, A., Choure, K.K. et al. Sensitivity enhancement with anti-reflection coating of silicon nitride (Si3N4) layer in silver-based Surface Plasmon Resonance (SPR) sensor for sensing of DNA hybridization. Appl. Phys. A 126, 946 (2020). https://doi.org/10.1007/s00339-020-04126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04126-9

Keywords

Navigation