Skip to main content
Log in

Investigation of N + SiGe juntionless vertical TFET with gate stack for gas sensing application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, a novel N + SiGe delta-doped gate stacked junctionless vertical tunnel field transistor (N + SiGe gate staked JL-VTFET) is proposed and investigated with its electrical characteristics for gas sensing application using the Silvaco TCAD simulation software. This vertical distribution of the source, channel, and drain will enhance the stability of the device. The integrated effects of vertical tunneling as compared to lateral tunneling will enhance the device sensitivity and decrease the subthreshold slope. The gate stacking of High-K (HfO2) with (SiO2) and the two-side gate metal electrode makes a good electrostatic control over a proposed device. Also, the presence of SiGe layer in between the source-channel interface will lead to the decrease in the tunneling barrier and enhance the device performance by reducing the energy bandgap from 1.1 eV to 0.7 eV. This paper analyses hydrogen gas using palladium and ammonia gas using Cobalt and Molybdenum metals as a gate electrode. Utilizing work function values appropriate for the above metals, p + regions are generated close to the source field. By using the Silvaco ATLAS TCAD simulator, the proposed structure’s characteristics are investigated using the surface potential, electric field and energy bandgap diagrams for gas molecule adsorption on metal surface. The reported sensitivity (~ SIdoff) is higher for the lower work function for Molybdenum, Cobalt and Palladium is 8.89 × 102, 2.04 × 103 and 1.97 × 103 with high Idon/Idoff current ratio (~ 6.4 × 104, 9.45 × 107, 1.1 × 1011), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, H.-S. Wong, Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259–288 (2001)

    Article  Google Scholar 

  2. S.O. Koswatta, M.S. Lundstrom, D.E. Nikonov, Performance comparison between pin tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56(3), 456–465 (2009). https://doi.org/10.1109/TED.2008.2011934

    Article  ADS  Google Scholar 

  3. S. Singh, B. Raj, Analytical modelling and simulation of Si-Ge hetero-junction dual material gate vertical T-shaped tunnel FET. SILICON 13, 1139–1150 (2021)

    Article  Google Scholar 

  4. Y. Khatami, K. Banerjee, Steep Subthreshold Slope n- and p-Type Tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2760 (2009). https://doi.org/10.1109/TED.2009.2030831

    Article  ADS  Google Scholar 

  5. Singh, Shailendra, and Balwinder Raj (2020). Analysis of ONOFIC technique using SiGe heterojunction double gate vertical TFET for low power applications. Silicon: 1–10.

  6. S. Singh, B. Raj, Modeling and simulation analysis of SiGe heterojunction double gate vertical t-shaped tunnel FET. Superlattices Microstruct. 142, 106496 (2020)

    Article  Google Scholar 

  7. Krishnamohan, Tejas, Donghyun Kim, Shyam Raghunathan, and Krishna Saraswat. "Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and≪ 60mV/dec subthreshold slope." In 2008 IEEE International Electron Devices Meeting, pp. 1–3. IEEE, 2008. DOI: https://doi.org/10.1109/IEDM.2008.4796839

  8. Gupta, Shilpi, Subodh Wairya, and Shailendra Singh (2021). Design and Analysis of Triple Metal Vertical TFET Gate Stacked with N-Type SiGe Delta-Doped Layer. Silicon. 1–9.

  9. E.-H. Toh et al., Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high-performance applications. J. Appl. Phys. 103(10), 104504 (2008)

    Article  ADS  Google Scholar 

  10. S. Singh, B. Raj, Two-dimensional analytical modeling of the surface potential and drain current of a double-gate vertical t-shaped tunnel field-effect transistor. J. Comput. Electron. 19(3), 1154–1163 (2020)

    Article  MathSciNet  Google Scholar 

  11. H. Damrongplasit, S.H. Nattapol, Kim, and Tsu-Jae King Liu, Study of random dopant fluctuation induced variability in the raised-Ge-source TFET. IEEE Electron Device Lett. 34(2), 184–186 (2013)

    Article  ADS  Google Scholar 

  12. W.V. Devi, B. Bhowmick, Optimisation of pocket doped junctionless TFET and its application in digital inverter. Micro Nano Lett. 14(1), 69–73 (2019)

    Article  Google Scholar 

  13. G.L. Priya, N.B. Balamurugan, New dual material double gate junctionless tunnel FET: Subthreshold modeling and simulation. AEU-Int. J. Electron. Commun. 99, 130–138 (2019)

    Article  Google Scholar 

  14. Singh, Shailendra, and Balwinder Raj (2020). Study of parametric variations on hetero-junction vertical t-shape TFET for suppressing ambipolar conduction.

  15. Brinker, C. Jeffrey, and George W. Scherer (2013). Sol-gel science: the physics and chemistry of sol-gel processing. Academic press.

  16. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semiconductor gas sensors in environmental monitoring. Sensors 10(6), 5469–5502 (2010)

    Article  ADS  Google Scholar 

  17. J. Wöllenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Böttner, I. Eisele, Cobalt oxide-based gas sensors on silicon substrate for operation at low temperatures. Sens. Actuators, B Chem. 93(1–3), 442–448 (2003)

    Article  Google Scholar 

  18. D. López-Torres, A. Lopez-Aldaba, C.E. Aguado, J.-L. Auguste, R. Jamier, P. Roy, M. López-Amo, F.J. Arregui, Sensitivity optimization of a microstructured optical fiber ammonia gas sensor by means of tuning the thickness of a metal oxide nano-coating. IEEE Sens. J. 19(13), 4982–4991 (2019)

    Article  ADS  Google Scholar 

  19. B. Timmer, W. Olthuis, A. Van Den Berg, Ammonia sensors and their applications—a review. Sens. Actuators, B Chem. 107(2), 666–677 (2005)

    Article  Google Scholar 

  20. K. Tsukada, M. Kariya, T. Yamaguchi, T. Kiwa, H. Yamada, T. Maehara, T. Yamamoto, S. Kunitsugu, Dual-gate field-effect transistor hydrogen gas sensor with thermal compensation. Japanese J. Appl. Phys. 49(2R), 024206 (2010)

    Article  ADS  Google Scholar 

  21. D. Connelly, D.E. Carl Faulkner, Grupp, and J. S. Harris, , A new route to zero-barrier metal source/drain MOSFETs. IEEE Trans. Nanotechnol. 3(1), 98–104 (2004)

    Article  ADS  Google Scholar 

  22. Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors (ITRS), 2015.

  23. Manual, Atlas Users. "Device simulation software, Silvaco Int." Santa Clara, CA, Version 5, no. 0 (2010).

  24. S. Singh, B. Raj, Analytical modeling and simulation analysis of T-shaped III-V heterojunction vertical T-FET. Superlattices Microstruct. 147, 106717 (2020)

    Article  Google Scholar 

  25. S. Singh, M. Khosla, G. Wadhwa, B. Raj, Design and analysis of double-gate junctionless vertical TFET for gas sensing applications. Appl. Phys. A 127(1), 1–7 (2021)

    Article  Google Scholar 

  26. S. Singh, B. Raj, Design and analysis of a heterojunction vertical t-shaped tunnel field effect transistor. J. Electron. Mater. 48(10), 6253–6260 (2019)

    Article  ADS  Google Scholar 

  27. Loubet, N., T. Hook, P. Montanini, C-W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita et al. "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET." In 2017 Symposium on VLSI Technology, pp. T230-T231. IEEE, 2017.

  28. A. Bhattacharyya, M. Chanda, D. De, Performance assessment of new dual-pocket vertical heterostructure tunnel FET-based biosensor considering steric hindrance issue. IEEE Trans. Electron Devices 66(9), 3988–3993 (2019)

    Article  ADS  Google Scholar 

  29. P.K. Dubey, B.K. Kaushik, T-shaped III-V heterojunction tunneling field-effect transistor. IEEE Trans. Electron Devices 64(8), 3120–3125 (2017)

    Article  ADS  Google Scholar 

  30. N. Jayaswal, A. Raman, N. Kumar, S. Singh, Design and analysis of electrostatic-charge plasma based dopingless IGZO vertical nanowire FET for ammonia gas sensing. Superlattices Microstruct. 125, 256–270 (2019)

    Article  ADS  Google Scholar 

  31. M. Verma, S. Tirkey, S. Yadav, D. Sharma, D.S. Yadav, Performance assessment of a novel vertical dielectrically modulated TFET-based biosensor. IEEE Trans. Electron Devices 64(9), 3841–3848 (2017)

    Article  ADS  Google Scholar 

  32. W.V. Devi, B. Bhowmick, P.D. Pukhrambam, N+ pocket-doped vertical TFET for enhanced sensitivity in biosensing applications: modeling and simulation. IEEE Trans. Electron Devices 67(5), 2133–2139 (2020)

    Article  ADS  Google Scholar 

  33. S. Shailendra, B. Raj, Analytical and compact modeling analysis of a SiGe hetero-material vertical L-shaped TFET. Silicon, pp. 1–11 (2021)

  34. R. Gautam, R.S. Manoj Saxena, Gupta and Mridula Gupta, , Gate-all-around nanowire MOSFET with catalytic metal gate for gas sensing applications. IEEE Trans. Nanotechnol. 12(6), 939–944 (2013)

    Article  ADS  Google Scholar 

  35. M. Safari, M. Gholizadeh, A. Salehi, Modeling and simulation of a MOSFET gas sensor with platinum gate for hydrogen gas detection. Sens. Actuators, B Chem. 141(1), 1–6 (2009)

    Article  Google Scholar 

  36. Dan, Yaping, Stephane Evoy, and A. T. Johnson. "Chemical gas sensors based on nanowires." arXiv preprint http://arxiv.org/abs/0804.4828 (2008).

  37. B. Karunagaran, S.J. Periyayya Uthirakumar, S.V. Chung, E.-K. Suh, TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 58(8–9), 680–684 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Sharma, A., Kumar, V. et al. Investigation of N + SiGe juntionless vertical TFET with gate stack for gas sensing application. Appl. Phys. A 127, 726 (2021). https://doi.org/10.1007/s00339-021-04880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04880-4

Keywords

Navigation