Skip to main content
Log in

Development of RF magnetron-sputtered molybdenum oxide-modified carbon cloth thin film as a ferulic acid sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The detection of phenolic compounds with electrochemical sensors is still very exciting regarding their selectivity, sensitivity, and stability. There is a need yet to operate sensors for ferulic acid (FA) and other phenolic compounds that function reliably under environmental conditions. Herein, we present a FA chemical sensor based on molybdenum trioxide (MoO3) Radiofrequency magnetron-sputtered carbon cloth (CC) thin-film electrode (MoO3/CC). With the lowest limit of detection (LOD) value of 2.3 nM and sensitivity of 0.0249 µA/µM, the sensor performed admirably. The presence of aggregated crystallites with wedge-shaped nanostructures for an average length of 800 nm was discovered using field emission scanning electron microscopy of MoO3 thin films. The MoO3 thin-film X-ray diffraction (XRD) patterns showed an orthorhombic crystal structure. The presence of multiphonon vibrations of Mo sublattice and oxygen atoms was visible in the Raman spectrum. The chemical structure of the resulting film of Mo, O, and C atoms was discovered using X-ray photoelectron spectroscopy. Notably, the sensor was used to authenticate spiked tap water and pineapple juice samples, yielding recaptures ranging from 99.53 to 102.52%, indicating that it could be used as an alternative method for the quantitative identification of FA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Malik, N. Joshi, V.K. Tomer, Mater. Adv. 2, 4190 (2021). https://doi.org/10.1039/D1MA00374G

    Article  Google Scholar 

  2. I. Castro, R. Datta, J. Ou, A. Gomez, S. Sriram, T. Daeneke, K. Kalantar, Int. J. Appl. Ceram. Technol. 18, 889 (2020). https://doi.org/10.1111/ijac.13684

    Article  Google Scholar 

  3. Y. Gong, Y. Dong, B. Zhao, R. Yu, S. Hub, Z. Tan, J. Mater. Chem. A. 8, 978 (2020). https://doi.org/10.1039/C9TA12005J

    Article  Google Scholar 

  4. H. Sun, H. Zhang, X. Jing, J. Hu, K. Shen, Z. Liang, J. Hu, Q. Tian, M. Luo, Z. Zhu, Z. Jiang, H. Huang, F. Song, Appl. Surf. Sci. 476, 789 (2019). https://doi.org/10.1016/j.apsusc.2019.01.169

    Article  ADS  Google Scholar 

  5. T.N. Kovacs, L. Studnicka, I.E. Lukacs, K. Laszlo, P. Pasierb, I.M. Szilagyi, G. Pokol, Nanomaterials 10, 891 (2020). https://doi.org/10.3390/nano10050891

    Article  Google Scholar 

  6. V. Kumar, X. Wang, P.S. Lee, Nanoscale 7, 11777 (2015). https://doi.org/10.1039/C5NR01505G

    Article  ADS  Google Scholar 

  7. Y. Wang, X. Wang, X. Li, R. Liu, Y. Bai, H. Xiao, Y. Liu, G. Yuan, Nano-Micro Lett. 12, 115 (2020). https://doi.org/10.1007/s40820-020-00450-0

    Article  ADS  Google Scholar 

  8. Y. Jiang, M. Sun, J. Ni, L. Li, A.C.S. Appl, Mater. Interfaces. 11, 37761 (2019). https://doi.org/10.1021/acsami.9b12858

    Article  Google Scholar 

  9. D. Spetter, M.N. Tahir, J. Hilgert, I. Khan, A. Qurashi, H. Lu, T. Weidner, W. Tremel, ACS Sustain. Chem. Eng. 6, 12641 (2018). https://doi.org/10.1021/acssuschemeng.8b01370

    Article  Google Scholar 

  10. D. Murugesan, K. Moulaee, G. Neri, N. Ponpandian, C. Viswanathan, Nanotechnology 30, 265501 (2019). https://doi.org/10.1088/1361-6528/ab0cb9

    Article  ADS  Google Scholar 

  11. M. Zhang, R. Li, D. Hu, X. Huang, Y. Liu, K. Yan, J. Electroanal. Chem. 836, 102 (2019). https://doi.org/10.1016/j.jelechem.2019.01.065

    Article  Google Scholar 

  12. N. Almutlaq, M.S. Zoromba, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.129712

    Article  Google Scholar 

  13. M.S. Zoromba, M.H. Abdel-aziz, M. Bassyouni, A. Attar, A.F. Al-hossainy, J. Mol. Struct. 1225, 129131 (2020). https://doi.org/10.1016/j.molstruc.2020.129131

    Article  Google Scholar 

  14. A.F. Al-Hossainy, M.S. Zoromba, Appl. Phys. A 127, 278 (2021). https://doi.org/10.1007/s00339-021-04434-8

    Article  ADS  Google Scholar 

  15. A. Bourezgui, I.H. El Azab, F. Alresheedi, S.A. Mahmoud, J. Mater. Sci. Mater. Electron. 32, 5489 (2021). https://doi.org/10.1007/s10854-021-05271-4

    Article  Google Scholar 

  16. M.S. Zoromba, A.F. Al-hossainy, M. Rzaigui, A. Abdelkader, F. Alresheedi, I.H. El Azab, F.M. Eissa, Opt. Mater. (Amst). 112, 110758 (2021). https://doi.org/10.1016/j.optmat.2020.110758

    Article  Google Scholar 

  17. M.S. Zoromba, A.A. Alshehri, A.F. Al-Hossainy, M.H. Abdel-Aziz, Opt. Mater (Amst). (2020). https://doi.org/10.1016/j.optmat.2020.110621

    Article  Google Scholar 

  18. N. Baghdadi, M.S. Zoromba, M. Bassyouni, Polymers 13, 278 (2021). https://doi.org/10.3390/polym13020278

    Article  Google Scholar 

  19. A.F. Al-Hossainy, A. Ibrahim, Opt. Mater. (Amst). 46, 131 (2015). https://doi.org/10.1016/j.optmat.2015.04.011

    Article  ADS  Google Scholar 

  20. A.F. Al-Hossainy, A. Ibrahim, Mater. Sci. Semicond. Process. 38, 13 (2015). https://doi.org/10.1016/j.mssp.2015.03.031

    Article  Google Scholar 

  21. A.A.I. Abd-Elmageed, S.M. Ibrahim, A. Bourezgui, A.F. Al-Hossainy, New J. Chem. 44, 8621 (2020). https://doi.org/10.1039/D0NJ01719A

    Article  Google Scholar 

  22. A.F. Al-Hossainy, M.S. Zoromba, O.A. El-Gammal, F.I. El-Dossoki, Struct. Chem. 30, 1365 (2019). https://doi.org/10.1007/s11224-019-1289-3

    Article  Google Scholar 

  23. A.M. Badr, A.A. El-Amin, A.F. Al-Hossainy, J. Phys. Chem. C 112, 14188 (2008). https://doi.org/10.1021/jp801199a

    Article  Google Scholar 

  24. S. Said, A.A. Abdelrahman, J Sol-Gel Sci Technol. 95, 308 (2020). https://doi.org/10.1007/s10971-020-05332-w

    Article  Google Scholar 

  25. P. Sivasakthi, H. Amir, S. Sornambikai, N. Ponpandian, C. Viswanathan, Sens. Actuator A Phys. 315, 112368 (2020). https://doi.org/10.1016/j.sna.2020.112368

    Article  Google Scholar 

  26. H. Amir, N. Ponpandian, C. Viswanathan, Mater. Lett. 300, 130175 (2021). https://doi.org/10.1016/j.matlet.2021.130175

    Article  Google Scholar 

  27. B. Barrocas, S. Serio, A. Rovisco, Y. Nunes, A. de Sa, M.S. da Silva, M.M. Jorge, Electrochim. Acta. 137, 99 (2014). https://doi.org/10.1016/j.electacta.2014.05.123

    Article  Google Scholar 

  28. D.K. Maurya, A. Sardarinejad, K. Alameh, Coatings 4, 756 (2014). https://doi.org/10.3390/coatings4040756

    Article  Google Scholar 

  29. D. Murugesan, S. Prakash, N. Ponpandian, P. Manisankar, C. Viswanathan, Colloids Surf. A Physicochem. Eng. Asp. 569, 137 (2019). https://doi.org/10.1016/j.colsurfa.2019.02.062

    Article  Google Scholar 

  30. V. Lobo, A. Patil, A. Phatak, N. Chandra, Pharmacogn. Rev. 4, 118 (2010). https://doi.org/10.4103/0973-7847.70902

    Article  Google Scholar 

  31. H. Kikuzaki, M. Hisamoto, K. Hirose, K. Akiyama, H. Taniguchi, J. Agric. Food Chem. 50, 2161 (2002). https://doi.org/10.1021/jf011348w

    Article  Google Scholar 

  32. O. Shiyi, K.C. Kwok, J Sci. Food Agric. 84, 1261 (2004). https://doi.org/10.1002/jsfa.1873

    Article  Google Scholar 

  33. S. Das, A.B.H. Wong, Sci. Rep. 10, 12288 (2020). https://doi.org/10.1038/s41598-020-68732-6

    Article  ADS  Google Scholar 

  34. P. Hassanzadeh, E. Arbabi, F. Atyabi, R. Dinarvand, Life Sci. 193, 64 (2018). https://doi.org/10.1016/j.lfs.2017.11.046

    Article  Google Scholar 

  35. I. Navas, R. Vinodkumar, V.P.M. Pillai, Appl. Phys. A Mater. Sci. Process. 103, 373 (2011). https://doi.org/10.1007/s00339-011-6345-9

    Article  ADS  Google Scholar 

  36. R. Naouel, H. Dhaouadi, F. Touati, N. Gharbi, Nano-Micro Lett. 1, 242 (2020). https://doi.org/10.1007/BF03353679

    Article  Google Scholar 

  37. D. Remiens, L. Yang, F. Ponchel, J.F. Legier, D. Chateigner, G. Wang, X. Dong, J. Appl. Phys. 109, 114106 (2011). https://doi.org/10.1063/1.3592282

    Article  ADS  Google Scholar 

  38. U. Pal, D. Samanta, S. Ghorai, B.K. Samantaray, A.K. Chaudhuri, J. Phys. D. Appl. Phys. 25, 1488 (1992). https://doi.org/10.1088/0022-3727/25/10/014

    Article  ADS  Google Scholar 

  39. J. Sakaliuniene, J. Cyviene, B. Abakeviciene, J. Dudonis, Acta Phys. Pol. A. 120, 63 (2011). https://doi.org/10.12693/APhysPolA.120.63

    Article  ADS  Google Scholar 

  40. T.A. Kareem, A.A. Kaliani, Plasma Sci. Technol. 15, 382 (2013). https://doi.org/10.1088/1009-0630/15/4/13

    Article  ADS  Google Scholar 

  41. K. Inzani, T. Grande, T.V. Bruer, S.M. Selbach, J. Phys. Chem. C. 120, 8959 (2016). https://doi.org/10.1021/acs.jpcc.6b00585

    Article  Google Scholar 

  42. I.K. Piltaver, I.J. Badovinac, I.P.R. Saric, M. Petravic, Appl. Surf. Sci. 425, 416 (2017). https://doi.org/10.1016/j.apsusc.2017.07.029

    Article  ADS  Google Scholar 

  43. T. Xia, Q. Li, X. Liu, J. Meng, X. Cao, J. Phys. Chem. B. 110, 2006 (2006). https://doi.org/10.1021/jp055945n

    Article  Google Scholar 

  44. L. Seguin, M. Figlarz, R. Cavagnat, J.C. Lassegues, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 51, 1323 (1995). https://doi.org/10.1016/0584-8539(94)00247-9

    Article  ADS  Google Scholar 

  45. M.F. Hassan, Z.P. Guo, Z. Chen, H.K. Liu, J. Power Sources. 195, 2372 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.065

    Article  ADS  Google Scholar 

  46. Y.C. Lin, W. Zhang, J.K. Huang, K.K. Liu, Y.H. Lee, C.T. Liang, C.W. Chu, L.J. Li, Nanoscale 4, 6637 (2012). https://doi.org/10.1039/C2NR31833D

    Article  ADS  Google Scholar 

  47. S.S. Shar, E. Cevik, A. Bozkurt, C. Yaman, Z. Almutari, T.S. Kayed, Electrochim. Acta. 354, 136770 (2020). https://doi.org/10.1016/j.electacta.2020.136770

    Article  Google Scholar 

  48. A.G.M. Ferrari, C.W. Foster, P.J. Kelly, D.A.C. Brownson, C.E. Banks, Biosensors 8, 1 (2018). https://doi.org/10.3390/bios8020053

    Article  Google Scholar 

  49. H. Beitollahi, S.Z. Mohammadi, M. Safaei, S. Tajik, Anal. Methods. 12, 1547 (2020). https://doi.org/10.1039/C9AY02598G

    Article  Google Scholar 

  50. H. Shi, G. Wen, Y. Nie, G. Zhang, H. Duan, Nanoscale 12, 5261 (2020). https://doi.org/10.1039/C9NR09785F

    Article  Google Scholar 

Download references

Acknowledgements

The Authors sincerely acknowledges to DST-SERB-CRG Grant No: CRG/2019/004547, The Rashtriya Uchchatar Shiksha Abhiyan (RUSA 2.0) Bharathiar Cancer and Theragnostic Research Centre (BCTRC), The Tamil Nadu State Council for Higher Education (TANSCHE) Grand No: RGP/2019-20/BU/HECP-0024 for financial assistance. Further, the authors sincerely admit they’re thanks to UGC-SAP, DST-PURSE and DST-FIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Viswanathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 500 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugesan, D., Amir, H., Ponpandian, N. et al. Development of RF magnetron-sputtered molybdenum oxide-modified carbon cloth thin film as a ferulic acid sensor. Appl. Phys. A 127, 805 (2021). https://doi.org/10.1007/s00339-021-04859-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04859-1

Keywords

Navigation