Skip to main content
Log in

Self-assembly and photoluminescence of molybdenum oxide nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the synthesis of self-assembled hillock shaped MoO3 nanoparticles on thin films exhibiting intense photoluminescence (PL) by RF magnetron sputtering and subsequent oxidation. MoO3 nanocrystals of size ∼29 nm are self-assembled into uniform nanoparticles with diameter ∼174 nm. The mechanism of the intense PL behaviour from MoO3 nanoparticles is investigated and systematically discussed. The films exhibit two bands; a near-band-edge UV emission and a defect related deep level visible emission. The enhancement in PL intensity with annealing is not only by the improvement in crystallinity and grain size but also by the increase in the rms surface roughness and porosity of the films. The PL intensity is thermally activated with activation energy 1.07 and 0.87 eV respectively for the UV and visible emissions. The UV band exhibits a blue shift according to the band gap with increasing post-annealing temperatures, which suggests the possibility to tune the UV photoluminescence band by varying the oxidation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Deng, B. Peng, D. Chen, F. Tang, A.J. Muscat, Langmuir 24, 11089 (2008)

    Article  Google Scholar 

  2. M. Mo, J.C. Yu, L. Zhang, S.K.A. Li, Adv. Mater. 17, 756 (2005)

    Article  Google Scholar 

  3. G.G. Liñan, E.C. Hernández, D.V. Cortes, E. Luna, V.H.M. García, M.L. López, J.H. Rosas, L.Z. Peredo, J. Vac. Sci. Technol. B 28, C3–C15 (2010)

    Google Scholar 

  4. A. Lanacer, N. Shtinkov, P. Desjardins, R.A. Masut, R. Leonelli, Semicond. Sci. Technol. 22, 1282 (2007)

    Article  ADS  Google Scholar 

  5. J.N. Yao, K. Hashimoto, A. Fujishima, Nature 355, 624 (1992)

    Article  ADS  Google Scholar 

  6. L. Kwangyeol, S.S. Won, T.P. Joon, J. Am. Chem. Soc. 125, 3409 (2003)

    Google Scholar 

  7. T. He, Y. Ma, Y. Cao, P. Jiang, X. Zhang, W. Yang, J. Yao, Langmuir 17, 8024 (2001)

    Article  Google Scholar 

  8. K. Bange, Sol. Energy Mater. Sol. Cells 58, 1 (1999)

    Article  Google Scholar 

  9. T. Ohta, M. Takenaga, N. Akahira, T. Yamashita, J. Appl. Phys. 53, 8497 (1982)

    Article  ADS  Google Scholar 

  10. V. Bhosle, A. Tiwari, J. Narayan, J. Appl. Phys. 97, 083539 (2005)

    Article  ADS  Google Scholar 

  11. S.K. Deb, Proc. R. Soc. A 304, 2U-231 (1968)

    Article  ADS  Google Scholar 

  12. S.K. Deb, J.A. Chopoorian, J. Appl. Phys. 37, 4818 (1966)

    Article  ADS  Google Scholar 

  13. M. Anpo, T. Suzuki, Y. Kubokawa, F. Tanaka, S. Yamashita, J. Phys. Chem. 88, 5778 (1984)

    Article  Google Scholar 

  14. M. Anpo, M. Kondo, S. Coluccia, C. Louis, M. Che, J. Phys. Chem. 111, 8791 (1989)

    Google Scholar 

  15. M. Labanowska, Phys. Chem. Chem. Phys. 1, 5385 (1999)

    Article  Google Scholar 

  16. M. Itoh, K. Hayakawa, S. Oishi, J. Phys., Condens. Matter 13, 6853 (2001)

    Article  ADS  Google Scholar 

  17. G. Blasse, M. Wiegel, J. Alloys Compd. 224, 342 (1995)

    Article  Google Scholar 

  18. J. Song, X. Ni, D. Zhang, H. Zheng, Solid State Sci. 8, 1164 (2006)

    Article  ADS  Google Scholar 

  19. Y. Zhao, J. Liu, Y. Zhou, Z. Zhang, Y. Xu, H. Naramoto, S.J. Yamamoto, J. Phys., Condens. Matter 15, L547 (2003)

    Article  ADS  Google Scholar 

  20. I. Navas, R. Vinodkumar, K.J. Lethy, M. Satyanarayana, V. Ganesan, V.P. Mahadevan Pillai, J. Nanosci. Nanotechnol. 9, 5254 (2009)

    Article  Google Scholar 

  21. I. Navas, R. Vinodkumar, A.P. Detty, K.J. Lethy, V. Ganesan, V. Sathe, V.P. Mahadevan Pillai, J. Phys. D, Appl. Phys. 42, 175305 (2009)

    Article  ADS  Google Scholar 

  22. S. Aggarwal, A. P Monga, S.R. Perusse, R. Ramesh, V. Ballarotto, E.D. Williams, B.R. Chalamala, Y. Wei, R.H. Reuss, Science 287, 2235 (2000)

    Article  ADS  Google Scholar 

  23. V.A. Schhukin, D. Bimberg, Rev. Mod. Phys. 71, 4 (1999)

    Google Scholar 

  24. D.B. Cullity, Elements of X-ray Diffraction (Addison Wesley, Reading, 1978)

    Google Scholar 

  25. T. Xia, Q. Li, X. Liu, J. Meng, X. Cao, J. Phys. Chem. B 110, 2006 (2006)

    Article  Google Scholar 

  26. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, New York, 1974), p. 159

    Book  Google Scholar 

  27. T. Toyoda, H. Nakanishi, S. Endo, T. Irie, J. Phys. D, Appl. Phys. 18, 747 (1985)

    Article  ADS  Google Scholar 

  28. R.B. Kale, C.D. Lokhande, Semicond. Sci. Technol. 20, 1 (2005)

    Article  ADS  Google Scholar 

  29. Z. Hussain, J. Mater. Res. 16, 2695 (2001)

    Article  ADS  Google Scholar 

  30. S. Sapra, D.D. Sarma, Phys. Rev. B 69, 125304 (2004)

    Article  ADS  Google Scholar 

  31. V. Srikant, D.R. Clark, J. Appl. Phys. 81, 6357 (1997)

    Article  ADS  Google Scholar 

  32. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  33. H. Deng, J.M. Hossenlopp, J. Phys. Chem. B 109, 66 (2005)

    Article  Google Scholar 

  34. J. Cho, J.W. Park, J. Vac. Sci. Technol. A 18, 329 (2000)

    Article  ADS  Google Scholar 

  35. L. Börnstein, Group III Condensed Matter—NonTetrahedrally Bonded Binary Compounds II (Springer, Berlin, 2006)

    Google Scholar 

  36. B. Sasi, K.G. Gopchandran, Nanotechnology 18, 115613 (2007)

    Article  ADS  Google Scholar 

  37. J.W. Rabalais, R.J. Colton, A.M. Guzman, Chem. Phys. Lett. 29, 131 (1974)

    Article  ADS  Google Scholar 

  38. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, J. Appl. Phys. 98, 013505 (2005)

    Article  ADS  Google Scholar 

  39. M. Dieterle, G. Mestl, Phys. Chem. Chem. Phys. 4, 822 (2002)

    Article  Google Scholar 

  40. M. Dieterle, In situ resonance Raman studies of molybdenum oxide based selective oxidation catalysts. Ph.D. thesis, Berlin (2001)

  41. D. Wang, H.W. Seo, C.-C. Tin, M.J. Bozack, J.R. Williams, M. Parka, N. Sathitsuksanoh, A. Cheng, Y.H. Tzeng, J. Appl. Phys. 99, 113509 (2006)

    Article  ADS  Google Scholar 

  42. J. Lagowski, E.S. Sproles Jr., H.C. Gatos, J. Appl. Phys. 48, 3566 (1977)

    Article  ADS  Google Scholar 

  43. Y. Wang, H. Wang, S. Li, S. Zhou, Y. Hang, J. Xu, J. Ye, S. Gu, R. Zhang, J. Cryst. Growth 284, 319 (2005)

    Article  ADS  Google Scholar 

  44. Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, S.K. Tay, X.Z. Zang, H.H. Hing, J. Appl. Phys. 94, 354 (2003)

    Article  ADS  Google Scholar 

  45. T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E.A. Zhukov, T. Yao, Appl. Phys. Lett. 81, 1231 (2002)

    Article  ADS  Google Scholar 

  46. S.S. Yi, J.S. Bae, K.S. Shim, J.H. Jeong, J.C. Park, P.H. Holloway, Appl. Phys. Lett. 84, 353 (2004)

    Article  ADS  Google Scholar 

  47. M. Cich, K. Kim, H. Choi, S.T. Hwang, Appl. Phys. Lett. 73, 2116 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Mahadevan Pillai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navas, I., Vinodkumar, R. & Mahadevan Pillai, V.P. Self-assembly and photoluminescence of molybdenum oxide nanoparticles. Appl. Phys. A 103, 373–380 (2011). https://doi.org/10.1007/s00339-011-6345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6345-9

Keywords

Navigation