Skip to main content
Log in

Electrochemical detection of methyl parathion using calix[6]arene/bismuth ferrite/multiwall carbon nanotube-modified fluorine-doped tin oxide electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly sensitive electrochemical sensor using a calix[6]arene/bismuth ferrite/multiwall carbon nanotube-modified fluorine-doped tin oxide electrode (CA6/BFO/MWCNTs/FTO) was fabricated for the detection of methyl parathion. The MWCNTs, BFO, and CA6 were consecutively cast onto the FTO electrode surface to enhance the surface area, electron transfer, and selectivity of sensors. The electrochemical behavior of CA6/BFO/MWCNTs/FTO was studied via cyclic voltammetry and electrochemical impedance spectroscopy. MP was detected via cyclic voltammetry in a phosphate buffer solution at pH 7.0. The working principle of the sensor involves a linear decrease in the anodic peak current of BFO with increasing MP concentration. The linear working ranges are 0.005–0.05 nM and 0.07–1.5 nM. The CA6/BFO/MWCNTs/FTO sensor provides a low detection limit (S/N = 3) of 5 pM and a high electrochemical sensitivity of 1.23 A μM–1 cm–2. The fabricated sensor was successfully applied to assess the presence and amount of MP in vegetables and fruits (recoveries of 82.0–106.8%), with results comparable to high-performance liquid chromatography.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma B, Cheong LZ, Weng X, Tan CP, Shen C (2018) Lipase@ZIF-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochim Acta 283:509–516

    Article  CAS  Google Scholar 

  2. Gao N, He C, Ma M, Cai Z, Zhou Y, Chang G, Wang X, He Y (2019) Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor. Anal Chim Acta 1072:25–34

    Article  CAS  Google Scholar 

  3. Kaur R, Rana S, Lalit K, Singh P, Kaur K (2020) Electrochemical detection of methyl parathion via a novel biosensor tailored on highly biocompatible electrochemically reduced graphene oxide-chitosan-hemoglobin coatings. Biosens Bioelectron 167:112486

    Article  CAS  Google Scholar 

  4. Deng L, Yuan J, Xie S, Huang H, Yue R, Xu J (2022) A novel Pd-Fe3O4/PEDOT:PSS/nitrogen and sulfur doped-Ti3C2Tx frameworks as highly sensitive sensing platform toward parathion-methyl residue in nature. Electrochim Acta 407:139897

    Article  CAS  Google Scholar 

  5. Oliveira PR, Kalinke C, Gogola JL, Mangrich AS, Junior LHM, Bergamini MF (2017) The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. J Electroanal Chem 799:602–608

    Article  Google Scholar 

  6. Yi Y, Zeng W, Zhu G (2021) β-Cyclodextrin functionalized molybdenum disulfide quantum dots as nanoprobe for sensitive fluorescent detection of parathion-methyl. Talanta 222:121703

    Article  CAS  Google Scholar 

  7. Du F, Fung YS (2018) Dual-opposite multi-walled carbon nanotube modified carbon fiber microelectrode for microfluidic chip-capillary electrophoresis determination of methyl parathion metabolites in human urine. Electrophoresis 39:1375–1381

    Article  CAS  Google Scholar 

  8. Luo L, Ou Y, Yang Y, Liu G, Liang Q, Ai X, Yang S, Nian Y, Su L, Wang J (2022) Rational construction of a robust metal-organic framework nanozyme with dual-metal active sites for colorimetric detection of organophosphorus pesticides. J Hazard Mater 423:127253

    Article  CAS  Google Scholar 

  9. Oliveira LLG, Kudo MVF, Lopes CT, Tarley CRT (2020) Development and multivariate optimization of nanostructured supramolecular liquid-liquid microextraction validated method for highly sensitive determination of methyl parathion in water samples. J Mol Liq 308:113026

    Article  Google Scholar 

  10. Liu L, Yang M, He M, Liu T, Chen F, Li Y, Feng X, Zhang Y, Zhang F (2020) Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides. Microchim Acta 187:503

    Article  CAS  Google Scholar 

  11. Maduraiveerana G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal Chem 13:10–23

    Article  Google Scholar 

  12. Gissawong N, Srijaranai S, Boonchiangma S, Uppachai P, Seehamart K, Jantrasee S, Moore E, Mukdasai S (2021) An electrochemical sensor for voltammetric detection of ciprofloxacin using a glassy carbon electrode modified with activated carbon, gold nanoparticles and supramolecular solvent. Microchim Acta 188:208

    Article  CAS  Google Scholar 

  13. Jadon N, Jain R, Sharma S, Singh K (2016) Recent trends in electrochemical sensors for multianalyte detection - A review. Talanta 161:894–916

    Article  CAS  Google Scholar 

  14. Ansari SA, Ahmed A, Ferdousi FK, Salam MdA, Shaikh AA, Barai HR, Lopa NS, Rahman MdM (2019) Conducting poly(aniline blue)-gold nanoparticles composite modified fluorine-doped tin oxide electrode for sensitive and non-enzymatic electrochemical detection of glucose. J Electroanal Chem 850:113394

    Article  CAS  Google Scholar 

  15. Dumore NS, Mukhopadhyay M (2020) Sensitivity enhanced SeNPs-FTO electrochemical sensor for hydrogen peroxide detection. J Electroanal Chem 878:114544

    Article  CAS  Google Scholar 

  16. Quintana C, Atienzar P, Budroni G, Mora L, Hernández L, García H, Corma A (2010) Development and characterization of fluorine tin oxide electrodes modified with high area porous thin films containing gold nanoparticles. Thin Solid Films 519:487–493

    Article  CAS  Google Scholar 

  17. Liu R, Wang Y, Li D, Dong L, Li B, Liu B, Ma H, Li F, Yin X, Chen X (2019) A simple, low-cost and efficient β-CD/MWCNTs/CP-based electrochemical sensor for the rapid and sensitive detection of methyl parathion. Int J Electrochem Sci 14:9785–9795

    Article  CAS  Google Scholar 

  18. Zhao Y, Qin J, Xu H, Gao S, Jiang T, Zhang S, Jin J (2019) Gold nanorods decorated with graphene oxide and multi-walled carbon nanotubes for trace level voltammetric determination of ascorbic acid. Microchim Acta 186:17

    Article  Google Scholar 

  19. He B, Wang L, Dong X, Yan X, Li M, Yan S, Yan D (2019) Aptamer-based thin film gold electrode modified with gold nanoparticles and carboxylated multi-walled carbon nanotubes for detecting oxytetracycline in chicken samples. Food Chem 300:125179

    Article  CAS  Google Scholar 

  20. Alam AU, Deen MJ (2020) Bisphenol A electrochemical sensor using graphene oxide and β-cyclodextrin-functionalized multi-walled carbon nanotubes. Anal Chem 92:5532–5539

    Article  CAS  Google Scholar 

  21. Dalkıran B, Fernandes IPG, David M, Brett CMA (2020) Electrochemical synthesis and characterization of poly(thionine)-deep eutectic solvent/carbon nanotube-modified electrodes and application to electrochemical sensing. Microchim Acta 187:609

    Article  Google Scholar 

  22. Ramaraj S, Mani S, Chen SM, Kokulnathan T, Lou BS, Ali MA, Hatamleh AA, Al-Hemaid FMA (2018) Synthesis and application of bismuth ferrite nanosheets supported functionalized carbon nanofiber for enhanced electrochemical detection of toxic organic compound in water samples. J Colloid Interface Sci 514:59–69

    Article  CAS  Google Scholar 

  23. Zhou Q, Lin Y, Lu M, Tang D (2017) Bismuth ferrite-based photoactive materials for photoelectrochemical detection of disease biomarkers coupling with multifunctional mesoporous silica nanoparticles. J Mater Chem B 5:9600–9607

    Article  CAS  Google Scholar 

  24. Wang N, Luo X, Han L, Zhang Z, Zhang R, Olin H, Yang Y (2020) Structure, performance, and application of BiFeO3 nanomaterials. Nano-Micro Lett 12:81

    Article  CAS  Google Scholar 

  25. Kumar V, Soam A, Sahoo PK, Panda HS (2021) Enhancement of electrochemical properties of carbon solution doped bismuth ferrite for supercapacitor application. Mater Today Proc 41:165–171

    Article  CAS  Google Scholar 

  26. El-Akaad S, Mohamed MA, Elmasri MM, Abdelwahab NS, Abdelaleem EA, Saeger SD, Beloglazova N (2020) 3D bismuth ferrite microflowers electrochemical sensor for the multiple detection of pesticides. J Electrochem Soc 167:027543

    Article  CAS  Google Scholar 

  27. Abraham T, Mathew B (2021) Silver phosphate based flower-like MoS2/BiFeO3 nanocomposite with enhanced activity for the detection of tetracycline. Mater Chem Phys 260:124103

    Article  CAS  Google Scholar 

  28. Chen Y, Zheng G, Shi Q, Zhao R, Chen M (2018) Preparation of thiolated calix[8]arene/AuNPs/MWCNTs modified glassy carbon electrode and its electrocatalytic oxidation toward paracetamol. Sens Actuators B Chem 277:289–296

    Article  CAS  Google Scholar 

  29. Xu H, Zheng J, Liang H, Li CP (2020) Electrochemical sensor for cancer cell detection using calix[8]arene/polydopamine/phosphorene nanocomposite based on host-guest recognition. Sens Actuators B Chem 317:128193

    Article  CAS  Google Scholar 

  30. Zhou J, Chen M, Diao G (2013) Calix[4,6,8]arenesulfonates functionalized reduced graphene oxide with high supramolecular recognition capability: fabrication and application for enhanced host-guest electrochemical recognition. ACS Appl Mater Interfaces 5:828–836

    Article  CAS  Google Scholar 

  31. Español ES, Maldonado M (2019) Host-guest recognition of pesticides by calixarenes. Crit Rev Anal Chem 49:383–394

    Article  Google Scholar 

  32. Li F, Liu R, Dubovyk V, Ran Q, Zhao H, Komarneni S (2022) Rapid determination of methyl parathion in vegetables using electrochemical sensor fabricated from biomass-derived and β-cyclodextrin functionalized porous carbon spheres. Food Chem 384:132643

    Article  CAS  Google Scholar 

  33. Wang Z, Ma B, Shen C, Cheong LZ (2019) Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@MOF nanofibers based biosensor. Talanta 197:356–362

    Article  CAS  Google Scholar 

  34. Hou X, Liu X, Li Z, Zhang J, Du G, Ran X, Yang L (2019) Electrochemical determination of methyl parathion based on pillar[5]arene@AuNPs@reduced graphene oxide hybrid nanomaterials. New J Chem 43:13048

    Article  CAS  Google Scholar 

  35. Manavalan S, Veerakumar P, Chen SM, Lin KC (2020) Three-dimensional zinc oxide nanostars anchored on graphene oxide for voltammetric determination of methyl parathion. Microchim Acta 187:17

    Article  CAS  Google Scholar 

  36. Remya KP, Prabhu D, Joseyphus RJ, Bose AC, Viswanathan C, Ponpandian N (2020) Tailoring the morphology and size of perovskite BiFeO3 nanostructures for enhanced magnetic and electrical properties. Mater Des 192:108694

    Article  CAS  Google Scholar 

  37. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. TrAC Trends Anal Chem 25:480–489

    Article  CAS  Google Scholar 

  38. Yang S, Li Y, Wang S, Wang M, Chu M, Xia B (2018) Advances in the use of carbonaceous materials for the electrochemical determination of persistent organic pollutants. A review Microchim Acta 185:112

    Article  Google Scholar 

  39. Soam A, Kumar R, C M, Singh M, Thatoi D, Dusane RO (2020) Development of paper-based flexible supercapacitor: bismuth ferrite/graphene nanocomposite as an active electrode material. J Alloys Compd 813:152145

  40. Moitra D, Anand C, Ghosh BK, Chandel M, Ghosh NN (2018) One-dimensional BiFeO3 nanowire-reduced graphene oxide nanocomposite as excellent supercapacitor electrode material. ACS Appl Energy Mater 1:464–474

    Article  CAS  Google Scholar 

  41. Li JW, Wang YL, Yan S, Li XJ, Pan SY (2016) Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits. Food Chem 192:260–267

    Article  CAS  Google Scholar 

  42. Sadri R, Hosseini M, Kazi SN, Bagheri S, Zubir N, Solangi KH, Zaharinie T, Badarudin A (2017) A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids. J Colloid Interface Sci 504:115–123

    Article  CAS  Google Scholar 

  43. Kebede MT, Dillu V, Devi S, Chauhan S (2020) Phase transition and optical properties of samarium-doped BiFeO3 nanoparticles. J Mater Sci Mater Electron 31:19950–19960

    Article  Google Scholar 

  44. Yao J, Liu Z, Jin M, Zou Y, Chen J, Xie P, Wang X, Akinoglu EM, Zhou G, Shui L (2020) Uniform honeycomb CNT-microparticles prepared via droplet-microfluidics and sacrificial nanoparticles for electrochemical determination of methyl parathion. Sens Actuators B Chem 321:128517

    Article  CAS  Google Scholar 

  45. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, Hoboken, NJ, USA

    Google Scholar 

  46. Devasenathipathy R, Mani V, Chen SM (2014) Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode. Talanta 124:43–51

    Article  CAS  Google Scholar 

  47. Mukdasai S, Poosittisak S, Ngeontae W, Srijaranai S (2018) A highly sensitive electrochemical determination of l-tryptophan in the presence of ascorbic acid and uric acid using in situ addition of tetrabutylammonium bromide on the ß-cyclodextrin incorporated multi-walled carbon nanotubes modified electrode. Sens Actuators B Chem 272:518–525

    Article  CAS  Google Scholar 

  48. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  49. Wannasri N, Uppachai P, Butwong N, Jantrasee S, Isa IM, Loiha S, Srijaranai S, Mukdasai S (2022) A facile nonenzymatic electrochemical sensor based on copper oxide nanoparticles deposited on activated carbon for the highly sensitive detection of methyl parathion. J Appl Electrochem 52:595–606

    Article  CAS  Google Scholar 

  50. Nehru R, Hsu YF, Wang SF, Dong CD, Govindasamy M, Habila MA, AlMasoud N (2021) Graphene oxide@Ce-doped TiO2 nanoparticles as electrocatalyst materials for voltammetric detection of hazardous methyl parathion. Microchim Acta 188:216

    Article  CAS  Google Scholar 

  51. Bharathkumar S, Sakar M, Balakumar S (2018) Fabrication of bismuth ferrite based hybrid nanostructures: insight into a catalytic and sensing properties for the detection of biomolecules. AIP Conf Proc 1942:050045

    Article  Google Scholar 

  52. Thu PTK, Trinh ND, Hoan NTV, Du DX, Mau TX, Trung VH, Phong NH, Toan TTT, Khieu DQ (2019) Synthesis of cobalt ferrite and simultaneous determination of ascorbic acid, acetaminophen and caffeine by voltammetric method using cobalt ferrite modified electrode. J Mater Sci Mater Electron 30:17245–17261

    Article  CAS  Google Scholar 

  53. Bai J, Ndamanisha JC, Liu L, Yang L, Guo L (2010) Voltammetric detection of riboflavin based on ordered mesoporous carbon modified electrode. J Solid State Electrochem 14:2251–2256

    Article  CAS  Google Scholar 

Download references

Funding

This work is funded by the Science Achievement Scholarship of Thailand (SAST) for N. Gissawong, the Materials Chemistry Research Center (MCRC) and the Center of Excellence for Innovation in Chemistry (PERCH–CIC), and the Office of the Higher Education Commission, Ministry of Education, Thailand. S. Mukdasai received grants from the NSRF via Program Management Unit for Human Resources & Institutional Development, Research and Innovation.

Author information

Authors and Affiliations

Authors

Contributions

Netsirin Gissawong: conceptualization, methodology, investigation, writing—original draft. Supalax Srijaranai: supervision, writing—review and editing. Suwat Nanan: visualization, investigation. Kanit Mukdasai: visualization. Pikaned Uppachai: methodology, validation, visualization. Norio Teshima: visualization. Siriboon Mukdasai: conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Siriboon Mukdasai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 916 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gissawong, N., Srijaranai, S., Nanan, S. et al. Electrochemical detection of methyl parathion using calix[6]arene/bismuth ferrite/multiwall carbon nanotube-modified fluorine-doped tin oxide electrode. Microchim Acta 189, 461 (2022). https://doi.org/10.1007/s00604-022-05562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05562-5

Keywords

Navigation