Skip to main content
Log in

Characterization of titania thin films grown by dip-coating technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A dip-coating technique was employed to prepare anatase phase of titania thin films. Fluorine doped tin oxide substrates were used to prepare titania thin films. The samples were annealed at 550 °C for 18 h. X-ray diffraction results revealed the amorphous and anatase phases of TiO2 for as-synthesized and annealed samples, respectively. The crystallite size of anatase TiO2 thin films was almost 25 nm for annealed samples. UV–visible confirmed the energy band gap 3.86 and 3.64 eV for as-prepared and calcinated titania thin films. The reduction in the energy band gap could be due to the change in crystallization and agglomeration of small grains after calcination. The morphology of the prepared films was investigated by field emission scanning electron microscopy which demonstrated the agglomeration of spherical particles of TiO2 with average particle size of about 30 nm. The molecular properties (chemical bonding) of the samples were investigated by means of Fourier Transform Infrared (FTIR) spectroscopy. FTIR analysis exhibited the formation of titania, functional group OH, hydroxyl stretching vibrations of the C–OH groups, bending vibration mode of H–O–H, alkyl C–H stretch, stretching band of Ti–OH, CN asymmetric band stretching, and C=O saturated aldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.H. Carolien, G. Albert, S. Joop, Chem. Mater. 15, 4617 (2003)

    Article  Google Scholar 

  2. L. Hongmei, T. Tsuyoshi, L. Yungi, Zh Jinfeng, D. Kazunari, Y. Yushan, Chem. Mater. 16, 846 (2004)

    Article  Google Scholar 

  3. D. Dastan, P.U. Londhe, N.B. Chaure, J. Mater. Sci.: Mater. Electron. 25(34), 73 (2014)

    Google Scholar 

  4. D. Cao-Thang, N. Thanh-Dinh, K. Freddy, D. Trong-On, ACS Nano 3(11), 3737 (2009)

    Article  Google Scholar 

  5. D. Dastan, S.W. Gosavi, N.B. Chaure, Macromol. Symp. 347, 81 (2015)

    Article  Google Scholar 

  6. A.K. Tarek, F. Armin, R. Lars, D. Ralf, W.B. Detlef, Chem. Mater. 22, 2050 (2010)

    Article  Google Scholar 

  7. S. Jakub, W. Pawel, S.-N. Magdalena, A. Halina, Chem. Phys. Lett. 566, 54 (2013)

    Article  Google Scholar 

  8. I. Burlacov, J. Jirkovsky, M. Muller, R.B. Heimann, Surf. Coat. Technol. 201, 255 (2006)

    Article  Google Scholar 

  9. Ch. Anirban, K. Akira, F. Takeshi, Ch. Ming-Wei, A. Tadafumi, J. Supercrit. Fluids 58, 136 (2011)

    Article  Google Scholar 

  10. N. Zydziak, M.-H.A. Zanin, I. Trick, Ch. Hübner, Mater. Chem. Phys. 153, 274 (2015)

    Article  Google Scholar 

  11. S.J. Rigby, A.H.R. Al-Obaidi, S.-K. Lee, D. McStay, P.K.J. Robertson, Appl. Surf. Sci. 252, 7948 (2006)

    Article  Google Scholar 

  12. J. Surmacki, P. Wronski, M. Szadkowska-Nicze, H. Abramczyk, Chem. Phys. Lett. 566, 54 (2013)

    Article  Google Scholar 

  13. J. Zhi, H. Cui, A. Chen, Y. Xie, F. Huang, J. Power Sources 281, 404 (2015)

    Article  Google Scholar 

  14. Z. Wang, Q. Tang, B. He, X. Chen, H. Chen, L. Yu, J. Power Sources 275, 175 (2015)

    Article  Google Scholar 

  15. M. Ratova, G.T. West, P.J. Kelly, X. Xia, Y. Gao, Vacuum 114, 205–212 (2015)

    Article  Google Scholar 

  16. D.V. Cristiana, P. Gianfranco, S. Annabella, Chem. Mater. 17, 6656 (2005)

    Article  Google Scholar 

  17. B. Nupur, J. Kiran, P. Renu, Govind, Ch. Suresh, Sens. Actuators B, 159, 112 (2011)

  18. K. Makoto, V.P. Valery, K. Masato, Chem. Mater. 19, 5373–5376 (2007)

    Article  Google Scholar 

  19. Y.A. Amira, A.K. Tarek, O. Torsten, B. Detlef, J. Phys. Chem. Lett. 2, 2461 (2011)

    Article  Google Scholar 

  20. HMd Nasim, M.G. Betar, JSh Nisarg, Sh-H Yang, T.H. Paula, Nano Lett. 13, 4610 (2013)

    Article  Google Scholar 

  21. P.S. Dipti, J. Naresh, K. Rohit, R. Sakthivel, P. Sony, T. Dash, T. Das, R. Kumar, J. Photochem. Photobiol. B: Biology 140, 69 (2014)

    Article  Google Scholar 

  22. G. Hanyang, H. Guoxin, Sh Wenfeng, Zh Kunxu, J. Supercrit. Fluids 88, 126 (2014)

    Article  Google Scholar 

  23. A.V. Anuj, M. Krishnamurthi, Mater. Chem. Phys. 139, 537 (2013)

    Article  Google Scholar 

  24. Zh Guo-Wen, H. Guo-Hua, X. Wei-Liang, X. Xiong-Fa, L. Dan-Ni, Y.-H. Xu, J. Mol. Catal. A: Chem. 363–364, 423 (2012)

    Google Scholar 

  25. R. Jiang, H.-Y. Zhu, H.-H. Chen, J. Yao, Y.-Q. Fu, Z.Y. Zhang, Y.M. Xu, Appl. Surf. Sci. 319, 189 (2014)

    Article  Google Scholar 

  26. M.F. Vanesa, L.S. Edgardo, N.B. Mirta, R.P. Luis, J. Colloid Interface Sci. 327, 403 (2008)

    Article  Google Scholar 

  27. Ch. Wei-Lun, S. Hung-Wei, Ch. Wen-Chang, Eur. Polym. J. 45, 2749 (2009)

    Article  Google Scholar 

  28. A.E. Shalan, M.M. Rashad, Y. Youhai, L.-C. Monica, M.S.A. Abdel-Mottaleb, Electrochim. Acta 89, 469 (2013)

    Article  Google Scholar 

  29. Godlisten N. Sh, E. Marion, S.M. Imran, J.J. Sun, T.K. Hee, Appl. Surf. Sci. 331, 98–107 (2015)

    Article  Google Scholar 

  30. NSh Godlisten, E. Gideon, V.Q. Dang, N.K. You, HSh Young, A. Hilonga, J. Kim, H.T. Kim, Powder Technol. 217, 489 (2012)

    Article  Google Scholar 

  31. H. Satoshi, A. Masahiko, S. Susumu, S. Nick, J. Photochem. Photobiol. A: Chem. 220, 94 (2011)

  32. Y. J. Kyeong, B. P. Seung, A. Masakazu, J. Photochem. Photobiol. A: Chem. 170, 247 (2005)

  33. N.R. Khalid, E. Ahmed, H. Zhanglian, M. Ahmad, Appl. Surf. Sci. 263, 254 (2012)

    Article  Google Scholar 

  34. C.Y. Jimmy, Y. Jiaguo, H. Wingkei, J. Zitao, Zh Lizhi, Chem. Mater. 14, 3808 (2002)

    Article  Google Scholar 

  35. F.M. Hasmath, M. Sankaran, Int. J. Biol. Macromol. 70, 420 (2014)

    Article  Google Scholar 

  36. Y. Yongheng, X. Tao, H. Guangwei, J. Zhongyi, W. Hong, J. Power Sources 276, 271 (2015)

    Article  Google Scholar 

  37. X. Tao, H. Weiqiang, Sh Xiaohui, W. Hong, L. Xicheng, J. Wang, Zh Jiang, J. Power Sources 196, 4934 (2011)

    Article  Google Scholar 

  38. L.P. Donald, M.L. Gary, S.K. George, Introduction to Spectroscopy, 3rd edn. (Thomson Learning, Washington, DC, 2001), pp. 20–100

    Google Scholar 

  39. K.E. Saisy, K.K. Suma, J. Rani, Polym. Degrad. Stab. 97, 615 (2012)

    Article  Google Scholar 

  40. S. Aihua, L. Zhixiang, L. Ming, X. Gaojie, L. Yong, P. Cui, Powder Technol. 201, 130 (2010)

    Article  Google Scholar 

  41. L.H. Rohan, A.C. Jonathan, L. Rasmus, M.H. James, P.B. Robert, Polym. 52, 4471 (2011)

    Article  Google Scholar 

  42. V. Iswarya, M. Bhuvaneshwari, A.A. Sruthi, I. Siddharth, Ch. Gouri, PTh Chandrasekaran, G.M. Bhalerao, S. Chakravarty, A.M. Raichur, N. Chandrasekaran, A. Mukherjee, Aquat. Toxicol. 161, 154 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the financial support received from UGC under the Grant No. F. 19-1/2013(SA-I) at New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Dastan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastan, D., Panahi, S.L. & Chaure, N.B. Characterization of titania thin films grown by dip-coating technique. J Mater Sci: Mater Electron 27, 12291–12296 (2016). https://doi.org/10.1007/s10854-016-4985-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4985-4

Keywords

Navigation