Skip to main content
Log in

Bipolar resistive switching device based on N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/poly(vinyl alcohol) bilayer stacked structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We propose a novel bilayer resistive switching device based on N,N′-bis (3-methylphenyl)-N,N′-diphenylbenzidine (TPD) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/poly(vinyl alcohol) (PEDOT:PSS/PVOH) composite. The bilayer structure of TPD and (PEDOT:PSS/PVOH) is fabricated on indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrate through all-printed technology. Here, the ITO acts as a bottom electrode and the top electrode is patterned using silver (Ag) epoxy. The fabricated device has a high resistance state (HRS) of 97.23 kΩ and a low resistance state (LRS) of 3.38 kΩ at read voltage of 0.58 V, which achieved Roff/Ron resistance ratio of ~ 28.7. The proposed device maintained its stability for more than 300 endurance cycles and retention time of more than 104 s. To ensure the resistive switching behavior, the proposed resistive memory device is electrically and mechanically tested. To conform the proper fabrication, FESEM is used for the surface morphology and cross section. The results suggest that the proposed device can be used in future printed resistive switching devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Chua, Memristor-the missing circuit element. IEEE Trans. Cir. Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  3. S. Shin, K. Kim, S.-M. Kang, Compact models for memristors based on charge-flux constitutive relationships. Trans. Comp.-Aided Des. Integ. Cir. Syst. 29, 590–598 (2010)

    Article  Google Scholar 

  4. G.U. Siddiqui, M.M. Rehman, K.H. Choi, Enhanced resistive switching in all-printed, hybrid and flexible memory device based on perovskite ZnSnO3 via PVOH polymer. Polymer 100, 102–110 (2016)

    Article  Google Scholar 

  5. S. Ali, J. Bae, C.H. Lee, K.H. Choi, Y.H. Doh, All-printed and highly stable organic resistive switching device based on graphene quantum dots and polyvinylpyrrolidone composite. Org. Electron. 25, 225–231 (2015)

    Article  Google Scholar 

  6. S. Ali, J. Bae, C.H. Lee, S. Shin, N.P. Kobayashi, Ultra-low power non-volatile resistive crossbar memory based on pull up resistors. Org. Electron. 41, 73–78 (2017)

    Article  Google Scholar 

  7. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13 (2012)

    Article  ADS  Google Scholar 

  8. J. Rajendran, H. Manem, R. Karri, G.S. Rose, Memristor based programmable threshold logic array. In: Proceedings of the 2010 IEEE/ACM International Symposium on Nanoscale Architectures, IEEE Press, Anaheim, California, 2010, pp. 5–10

  9. S. Ali, A. Hassan, G. Hassan, J. Bae, C.H. Lee, Flexible frequency selective passive circuits based on memristor and capacitor. Org. Electron. 51, 119–127 (2017)

    Article  Google Scholar 

  10. M.G. Bray, D.H. Werner, Passive switching of electromagnetic devices with memristors. Appl. Phys. Lett. 96, 073504 (2010)

    Article  ADS  Google Scholar 

  11. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)

    Article  ADS  Google Scholar 

  12. M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61 (2015)

    Article  ADS  Google Scholar 

  13. J. Borghetti, Z. Li, J. Straznicky, X. Li, D.A.A. Ohlberg, W. Wu, D.R. Stewart, R.S. Williams, A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Natl. Acad. Sci. USA 106, 1699–1703 (2009)

    Article  ADS  Google Scholar 

  14. S. Ali, J. Bae, C.H. Lee, Printed non-volatile resistive switches based on zinc stannate (ZnSnO3). Curr. Appl. Phys. 16, 757–762 (2016)

    Article  ADS  Google Scholar 

  15. N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo, K.H. Choi, Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Curr. Appl. Phys. 13, 90–96 (2013)

    Article  ADS  Google Scholar 

  16. G. Ghosh, M.K. Orlowski, Correlation between set and reset voltages in resistive RAM cells. Curr. Appl. Phys. 15, 1124–1129 (2015)

    Article  ADS  Google Scholar 

  17. S.B. Lee, S.H. Chang, H.K. Yoo, M.J. Yoon, S.M. Yang, B.S. Kang, Reversible changes between bipolar and unipolar resistance-switching phenomena in a Pt/SrTiOx/Pt cell. Curr. Appl. Phys. 12, 1515–1517 (2012)

    Article  ADS  Google Scholar 

  18. M.K. Hota, M.K. Bera, B. Kundu, S.C. Kundu, C.K. Maiti, A natural silk fibroin protein-based transparent bio-memristor. Adv. Func. Mater. 22, 4493–4499 (2012)

    Article  Google Scholar 

  19. G. Zhou, B. Sun, A. Zhou, B. Wu, H. Huang, A larger nonvolatile bipolar resistive switching memory behaviour fabricated using eggshells. Curr. Appl. Phys. 17, 235–239 (2017)

    Article  ADS  Google Scholar 

  20. M.M. Rehman, G.U. Siddiqui, J.Z. Gul, S.-W. Kim, J.H. Lim, K.H. Choi, Resistive Switching in all-printed, flexible and hybrid MoS2-PVA nanocomposite based memristive device fabricated by reverse offset. Sci. Rep. 6, 36195 (2016)

    Article  ADS  Google Scholar 

  21. I. Mihalache, L.M. Veca, M. Kusko, D. Dragoman, Memory effect in carbon quantum DOT–PEG1500N composites. Curr. Appl. Phys. 14, 1625–1632 (2014)

    Article  ADS  Google Scholar 

  22. R. Muhammad Muqeet, S. Ghayas Uddin, D. Yang Hoi, C. Kyung, Hyun, Highly flexible and electroforming free resistive switching behavior of tungsten disulfide flakes fabricated through advanced printing technology. Semicond. Sci. Technol. 32, 095001 (2017)

    Article  ADS  Google Scholar 

  23. B. De Salvo, J. Buckley, D. Vuillaume, Recent results on organic-based molecular memories. Curr. Appl. Phys. 11, e49–e57 (2011)

    Article  Google Scholar 

  24. J.J. Yang, M. Feng, D.P. Matthew, A.A.O. Douglas, R.S. Duncan, L. Chun Ning, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009)

    Article  Google Scholar 

  25. Z.-M. Liao, C. Hou, Q. Zhao, D.-S. Wang, Y.-D. Li, D.-P. Yu, Resistive switching and metallic-filament formation in Ag2S nanowire transistors. Small 5, 2377–2381 (2009)

    Article  Google Scholar 

  26. S. Larentis, F. Nardi, S. Balatti, D.C. Gilmer, D. Ielmini, Resistive switching by voltage-driven ion migration in bipolar RRAM—part II: modeling. IEEE Trans. Electron Devices 59, 2468–2475 (2012)

    Article  ADS  Google Scholar 

  27. B. Geffroy, P. le Roy, C. Prat, Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006)

    Article  Google Scholar 

  28. Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107, 953–1010 (2007)

    Article  Google Scholar 

  29. U. Schubert, N. Huesing, A. Lorenz, Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chem. Mater. 7, 2010–2027 (1995)

    Article  Google Scholar 

  30. C.-H. Huang, J.-S. Huang, S.-M. Lin, W.-Y. Chang, J.-H. He, Y.-L. Chueh, ZnO1–x nanorod arrays/ZnO Thin Film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 6, 8407–8414 (2012)

    Article  Google Scholar 

  31. Y.C. Bae, A.R. Lee, J.B. Lee, J.H. Koo, K.C. Kwon, J.G. Park, H.S. Im, J.P. Hong, Oxygen ion drift-induced complementary resistive switching in homo TiOx/TiOy/TiOx and hetero TiOx/TiON/TiOx triple multilayer frameworks. Adv. Funct. Mater. 22, 709–716 (2012)

    Article  Google Scholar 

  32. U. Bauer, L. Yao, A.J. Tan, P. Agrawal, S. Emori, H.L. Tuller, S. van Dijken, G.S.D. Beach, Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174 (2014)

    Article  ADS  Google Scholar 

  33. S.-M. Lin, J.-Y. Tseng, T.-Y. Su, Y.-C. Shih, J.-S. Huang, C.-H. Huang, S.-J. Lin, Y.-L. Chueh, Tunable multilevel storage of complementary resistive switching on single-step formation of ZnO/ZnWOx bilayer structure via interfacial engineering. ACS Appl. Mater. Interfaces. 6, 17686–17693 (2014)

    Article  Google Scholar 

  34. Z. Hu, Q. Li, M. Li, Q. Wang, Y. Zhu, X. Liu, X. Zhao, Y. Liu, S. Dong, Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl. Phys. Lett. 102, 102901 (2013)

    Article  ADS  Google Scholar 

  35. G. Hassan, S. Ali, J. Bae, C.H. Lee, Flexible resistive switching device based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/poly(4-vinylphenol) (PVP) composite and methyl red heterojunction. Appl. Phys. A 123, 256 (2017)

    Article  ADS  Google Scholar 

  36. K. Zhang, K. Sun, F. Wang, Y. Han, Z. Jiang, B. Wang, K. Liu, H.S.P. Wong, Electrochemical metallization and trapping/detrapping resistive switching mechanism in Al/VOx/Cu RRAM. ECS Solid State Lett. 3, Q63–Q66 (2014)

    Article  Google Scholar 

  37. Y. Sun, C. Song, J. Yin, X. Chen, Q. Wan, F. Zeng, F. Pan, Guiding the growth of a conductive filament by nanoindentation to improve resistive switching. ACS Appl. Mater. Interfaces. 9, 34064–34070 (2017)

    Article  Google Scholar 

  38. S. Ali, J. Bae, C.H. Lee, Organic diode with high rectification ratio made of electrohydrodynamic printed organic layers. Electron. Mater. Lett. 12, 270–275 (2016)

    Article  ADS  Google Scholar 

  39. L.S.C. Pingree, B.A. MacLeod, D.S. Ginger, The changing face of PEDOT:PSS films: substrate, bias, and processing effects on vertical charge transport. J Phys Chem C 112, 7922–7927 (2008)

    Article  Google Scholar 

  40. G.-F. Wang, X.-M. Tao, R.-X. Wang, Fabrication and characterization of OLEDs using PEDOT:PSS and MWCNT nanocomposites. Composit Sci Technol 68, 2837–2841 (2008)

    Article  Google Scholar 

  41. X. Zhang, J. Wu, J. Wang, J. Zhang, Q. Yang, Y. Fu, Z. Xie, Highly conductive PEDOT:PSS transparent electrode prepared by a post-spin-rinsing method for efficient ITO-free polymer solar cells. Sol. Energy Mater. Sol. Cells 144, 143–149 (2016)

    Article  Google Scholar 

  42. X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W.R. Salaneck, M. Berggren, The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)—poly(styrenesulfonate) (PEDOT—PSS) plastic electrodes. Chem. Mater. 18, 4354–4360 (2006)

    Article  Google Scholar 

  43. M.E. Londoño, J.M. Jaramillo, R. Sabater, J.M. Vélez, Dielectric properties of poly(vinyl alcohol) hydrogels prepared by freezing/thawing technique. E.I.A. Revista 18, 105–114 (2012)

    Google Scholar 

  44. R. Scholz, L. Gisslén, C. Himcinschi, I. Vragović, E.M. Calzado, E. Louis, E. San Fabián, M.A. Maroto, Díaz-García, asymmetry between absorption and photoluminescence line shapes of TPD: spectroscopic fingerprint of the twisted biphenyl core. J Phys Chem A 113, 315–324 (2009)

    Article  Google Scholar 

  45. L. Ma, Z. Wu, T. Lei, Y. Yu, F. Yuan, S. Ning, B. Jiao, X. Hou, Theoretical insight into the deep-blue amplified spontaneous emission of new organic semiconductor molecules. Org. Electron. 15, 3144–3153 (2014)

    Article  Google Scholar 

  46. J. Ouyang, C.W. Chu, F.C. Chen, Q. Xu, Y. Yang, Polymer optoelectronic devices with high conductivity poly(3,4-Ethylenedioxythiophene) anodes. J Macromol Sci Part A 41, 1497–1511 (2004)

    Article  Google Scholar 

  47. L. Keun Woo, K. Kyung Min, L. Junwye, A. Rashid, K. Byeonghoon, P. Sung Kye, L. Seok Kiu, P. Sung Ha, K. Hyun Jae, A two-dimensional DNA lattice implanted polymer solar cell. Nanotechnology 22, 375202 (2011)

    Article  Google Scholar 

  48. Y. Sun, M. Tai, C. Song, Z. Wang, J. Yin, F. Li, H. Wu, F. Zeng, H. Lin, F. Pan, Competition between Metallic and Vacancy defect conductive filaments in a CH3NH3PbI3-based memory device. J Phys Chem C 122, 6431–6436 (2018)

    Article  Google Scholar 

  49. P. Matyba, H. Yamaguchi, M. Chhowalla, N.D. Robinson, L. Edman, Flexible and metal-free light-emitting electrochemical cells based on graphene and PEDOT-PSS as the electrode materials. ACS Nano 5, 574–580 (2011)

    Article  Google Scholar 

  50. S. Ali, J. Bae, C.H. Lee, N.P. Kobayashi, S. Shin, A. Ali, Resistive switching device with highly asymmetric current-voltage characteristics: a solution to backward sneak current in passive crossbar arrays. Nanotechnology 29, 455201 (2018)

    Article  ADS  Google Scholar 

  51. M.M. Rehman, B.-S. Yang, Y.-J. Yang, K.S. Karimov, K.H. Choi, Effect of device structure on the resistive switching characteristics of organic polymers fabricated through all printed technology. Curr. Appl. Phys. 17, 533–540 (2017)

    Article  ADS  Google Scholar 

  52. P. Singh, P.K. Rout, M. Singh, R.K. Rakshit, A. Dogra, Ferroelectric memory resistive behavior in BaTiO3/Nb doped SrTiO3 heterojunctions. Thin Solid Films 643, 60–64 (2017)

    Article  ADS  Google Scholar 

  53. Z. Yongdan, L. Meiya, H. Zhongqiang, L. Xiaolian, W. Qiangwen, F. Xiaoli, G. Kaimo, Nonvolatile resistive switching behaviour and the mechanism in Nd:BiFeO 3 /Nb:SrTiO 3 heterostructure. J. Phys. D Appl. Phys. 46, 215305.` (2013)

    Article  Google Scholar 

  54. M.N. Awais, M. Mustafa, M.N. Shehzad, U. Farooq, M.T. Hamayun, K.H. Choi, Resistive-switching and current-conduction mechanisms in F8BT polymer resistive switch. Micro Nano Lett 11, 712–714 (2016)

    Article  Google Scholar 

  55. I. Stoica, E. Angheluta, M. Ivan, A. Farcas, D. Dorohoi, Electro-optical and morphological characterization of PVA foils with sulfathiazole. Digest J Nanomater Biostruct 6, 1667–1674 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2016R1A2B4015627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Bae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.U., Hassan, G., Raza, M.A. et al. Bipolar resistive switching device based on N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/poly(vinyl alcohol) bilayer stacked structure. Appl. Phys. A 124, 726 (2018). https://doi.org/10.1007/s00339-018-2142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2142-z

Navigation