Skip to main content
Log in

Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study makes use of the magnetic pulse method for providing the uniaxial tension of TiNi shape memory alloy specimens. Finite element simulations demonstrate good agreement between the evaluated residual strains and experimental values. The evaluated average strain rates are ~ 4000–5000 s−1 and in local areas, they reach 10,000–12,000 s−1. The functional properties of the alloy after magnetic pulse tension are shown and compared with the results after quasistatic tension. The values of the shape memory effect after magnetic pulse tension decrease by 15–20%. Magnetic field simulation shows that induced currents are negligible and do not lead to heating in the working part of the specimens. It is concluded that the reason for the decrease in the shape memory effect is the high pre-strain rate. Reorientation processes must be sensitive to the strain rate, so the proportion of the oriented martensite decreases with increasing strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, M. Kleiner, J. Mater. Process. Technol. (2011). https://doi.org/10.1016/j.jmatprotec.2010.12.012

    Article  Google Scholar 

  2. Yu.V. Batygin, E.A. Chaplygin, O.S. Sabokar, Elektroteh. elektromeh. (2016). https://doi.org/10.20998/2074-272X.2016.5.05

    Article  Google Scholar 

  3. D.I. Alekseev, S.I. Krivosheev, S.G. Magazinov, MATEC Web Conf. (2018). https://doi.org/10.1051/matecconf/201814505006

    Article  Google Scholar 

  4. N.V. Korovkin, S.I. Krivosheev, S.G. Magazinov, V.K. Slastenko, Int. J. Mech. 9, 293 (2015)

    Google Scholar 

  5. K.R. Chandar, W.G. Knauss, Int. J. Fract. (1982). https://doi.org/10.1007/BF01140336

    Article  Google Scholar 

  6. S.G. Magazinov, S.I. Krivosheev, Yu.E. Adamyan, D.I. Alekseev, V.V. Titkov, L.V. Chernenkaya, Mater. Phys. Mech. (2018). https://doi.org/10.18720/MPM.4012018_14

    Article  Google Scholar 

  7. S.I. Krivosheev, S.G. Magazinov, J. Phys. Conf. Ser. (2016). https://doi.org/10.1088/1742-6596/774/1/012049

    Article  Google Scholar 

  8. G.I. Kanel, S.V. Razorenov, V.E. Fortov (2005) A failure wave phenomenon in brittle materials. Joint 20th AIRAPT–43th EHPRG, June 27–July 1, Karlsruhe, Germany, 119921

  9. G.I. Kanel, S.V. Razorenov, G.V. Garkushin, A.S. Savinykh, J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/946/1/012039

    Article  Google Scholar 

  10. Y. Meshcheryakov, A. Divakov, N. Zhigacheva, G. Konovalov, Proc. Struct. Int. (2016). https://doi.org/10.1016/j.prostr.2016.06.062

    Article  Google Scholar 

  11. Y. Mesheryakov, A. Divakov, N. Zhigacheva, G. Konovalov, J. Appl. Mech. Tech. Phys. (2014). https://doi.org/10.1134/S0021894414050198

    Article  Google Scholar 

  12. A. Gruzdkov, S. Krivosheev, Yu. Petrov, A. Razov, A. Utkin, Mater. Sci. Eng. A (2008). https://doi.org/10.1016/j.msea.2007.03.113

    Article  Google Scholar 

  13. P. Lin, H. Tobushi, K. Tanaka, T. Hattori, A. Ikai, JSME Int. J (1996). https://doi.org/10.1299/jsmea1993.39.1_117

    Article  Google Scholar 

  14. Y. Liu, Y. Li, K.T. Ramesh, J. Van Humbeeck, Scr. Mater. (1999). https://doi.org/10.1016/S1359-6462(99)00058-5

    Article  Google Scholar 

  15. Y. Liu, Y. Li, Z. Hie, K.T. Ramesh, Phil. Mag. Lett. (2002). https://doi.org/10.1080/09500830210153869

    Article  Google Scholar 

  16. Y. Liu, Y. Li, K.T. Ramesh, Phil. Mag. A: Phys. Cond. Matt. Defects Mech. Prop. (2002). https://doi.org/10.1080/01418610208240046

    Article  Google Scholar 

  17. S. Belyaev, A. Petrov, A. Razov, A. Volkov, Mat. Sc. Eng. A (2004). https://doi.org/10.1016/j.msea.2003.11.059

    Article  Google Scholar 

  18. S. Nemat-Nasser, J.-Y. Choi, W.-G. Guo, J.B. Isaacs, Mech. Mater. (2005). https://doi.org/10.1016/j.mechmat.2004.03.007

    Article  Google Scholar 

  19. S. Nemat-Nasser, J.-Y. Choi, Acta Mater. (2005). https://doi.org/10.1016/j.actamat.2004.10.001

    Article  Google Scholar 

  20. R.R. Adharapurapu, F. Jiang, K.S. Vecchio, G.T. Gray III., Acta Mater. (2006). https://doi.org/10.1016/j.actamat.2006.05.047

    Article  Google Scholar 

  21. S. Nemat-Nasser, J.-Y. Choi, Philos. Mag. A (2006). https://doi.org/10.1080/14786430500269469

    Article  Google Scholar 

  22. Y. Qiu, M.L. Young, X. Nie, Metall. Mater. Trans. (2015). https://doi.org/10.1007/s11661-015-3063-5

    Article  Google Scholar 

  23. W.W. Chen, Q. Wu, J.H. Kang, N.A. Winfree, Int. J. Solids Struct. (2001). https://doi.org/10.1016/S0020-7683(01)00165-2

    Article  Google Scholar 

  24. S. Nemat-Nasser, W.-G. Guo, Mech. Mater. (2006). https://doi.org/10.1016/j.mechmat.2005.07.004

    Article  Google Scholar 

  25. H. Tobushi, Y. Shimeno, T. Hachisuka, K. Tanaka, Mech. Mater. (1998). https://doi.org/10.1016/S0167-6636(98)00041-6

    Article  Google Scholar 

  26. J. Zurbitu, R. Santamarta, C. Picornell, W.M. Gan, H.-G. Brokmeier, J. Aurrekoetxea, Mat. Sc. Eng. A. (2010). https://doi.org/10.1016/j.msea.2010.09.094

    Article  Google Scholar 

  27. V. Grigorieva, A. Danilov, A. Razov, Acta Phys. Pol. (2015). https://doi.org/10.12693/APhysPolA.128.592

    Article  Google Scholar 

  28. S.-Y. Jiang, Y.-Q. Zhang, Trans. Nonferrous Met. Soc. China. (2012). https://doi.org/10.1016/S1003-6326(11)61145-X

    Article  Google Scholar 

  29. S.-Y. Jiang, Y.-Q. Zhang, Y.-N. Zhao, M. Tang, W.-L. Yi, J. Cent, South Univ. (2013). https://doi.org/10.1007/s11771-013-1454-6

    Article  Google Scholar 

  30. A.M. Bragov, L.A. Igumnov, AYu. Konstantinov, A.K. Lomunov, A.I. Razov, Adv. Struct. Mater. (2019). https://doi.org/10.1007/978-3-030-11665-1

    Article  Google Scholar 

  31. Y. Qiu, M.L. Young, X. Nie, Metall. Mater. Trans. A (2015). https://doi.org/10.1007/s11661-015-3063-5

    Article  Google Scholar 

  32. Y. Qiu, M.L. Young, X. Nie, Metall. Mater. Trans. A (2017). https://doi.org/10.1007/s11661-016-3857-0

    Article  Google Scholar 

  33. A. Bragov, L. Igumnov, A. Lomunov, A. Konstantionov, D. Lamzin, L. Kruczka, MATEC Web Conf. (2018). https://doi.org/10.1051/matecconf/201817402022

    Article  Google Scholar 

  34. Z. Pang, Y. Liu, M. Li, C. Zhu, S. Li, Y. Wang, D. Wang, C. Song, Appl. Phys. A (2019). https://doi.org/10.1007/s00339-018-2359-x

    Article  Google Scholar 

  35. A. Bragov, A. Konstantionov, L. Kruczka, A. Lomunov, A. Filippov, EPJ Web Conf. (2018). https://doi.org/10.1051/epjconf/201818302035

    Article  Google Scholar 

  36. S.I. Krivosheev, Tech. Phys. (2005). https://doi.org/10.1134/1.1884733

    Article  Google Scholar 

  37. J.R. Asay, T. Ao, T.J. Vogler, J.-P. Davis, G.T. Gray III., J. Ap. Ph. (2009). https://doi.org/10.1063/1.3226882

    Article  Google Scholar 

  38. T. Ao, J.R. Asay, S. Chantrenne, M.R. Baer, C.A. Hall, Rev. Sci. Instrum. (2008). https://doi.org/10.1063/1.2827509

    Article  Google Scholar 

  39. S. Belyaev, N. Resnina, T. Rakhimov, V. Andreev, Sens. Act. A Phys. (2020). https://doi.org/10.1016/j.sna.2020.111911

    Article  Google Scholar 

  40. S. Belyaev, N. Resnina, A. Ivanova, I. Ponikarova, E. Iaparova, Shape. Memory. Superelast. (2020). https://doi.org/10.1007/s40830-020-00282-2

    Article  Google Scholar 

Download references

Acknowledgments

The reported study was funded by RFBR, project number 19-32-60035. The experiments on magnetic pulse loading and simulation were carried out with the support of the Academic Excellence Project 5-100 proposed by Peter the Great St. Petersburg Polytechnic University. The simulation results were obtained using the computational resources of Peter the Great Saint-Petersburg Polytechnic University Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugeny Ostropiko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostropiko, E., Krivosheev, S. & Magazinov, S. Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method. Appl. Phys. A 127, 27 (2021). https://doi.org/10.1007/s00339-020-04160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04160-7

Keywords

Navigation