Skip to main content
Log in

Room temperature ferromagnetism in Cr doped SrSnO3 perovskite system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline SrSnO3 compounds doped with 1, 3 and 5% of Cr was synthesized by simple chemical precipitation method and the effect of doping on structural, optical and magnetic properties was investigated. Powder X-ray diffraction analysis reveals the orthorhombic structure of pure and Cr doped SrSnO3 compounds. The appearance of metal oxide vibrations were investigated by Fourier transform infra red spectroscopy analysis. Presence of active Raman modes, Sr–O and Sn–O band vibrations were examined by Raman spectral analysis. The high degree of agglomeration in pure SrSnO3 sample and formation of rod like shape of particulate system in all the Cr doped samples was identified by Electron microscopy techniques. X-ray photoelectron spectroscopy analysis discloses the oxidation states of elements and presence of oxygen vacancy in the compounds. The intriguing violet–blue emission behavior of pure and Cr doped compounds due to interaction between O 2p state and Sn 5s energy levels was observed by photoluminescence spectral studies. The magnetization studies exhibit the diamagnetic property of pure SrSnO3 compound and doping of Cr3+ in Sr–Sn–O lattice drives the carrier induced exchange interactions which results ferromagnetic phase transition in all the Cr doped compounds. From the present investigation, tunability of dia to ferromagnetism with respect to the dopant concentration (Cr3+) in SrSnO3 system at room temperature leads the material for fabrication of magneto-optical and electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.A. Prinz, Magneto electronics. Science 282, 1660–1663 (1998)

    Article  Google Scholar 

  2. S.A. Wolf, Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1494 (2001)

    Article  Google Scholar 

  3. K.W. Edmonds, K.Y. Wang, R.P. Campion, A.C. Neumann, N.R.S. Farley, B.L. Gallagher, C.T. Foxon, Appl. Phys. Lett. 81, 4991 (2002)

    Article  Google Scholar 

  4. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1018 (2000)

    Article  Google Scholar 

  5. M. Snure, D. Kumar, A. Tiwari, Ferromagnetism in Ni-doped ZnO films: extrinsic or intrinsic. Appl. Phys. Lett. 94, 012510 (2009)

    Article  Google Scholar 

  6. Y. Yamada, K. Ueno, T. Fukumura, H.T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, M. Kawasaki, Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011)

    Article  Google Scholar 

  7. S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S. Das Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO2. Phys. Rev. Lett. 91, 077205-4 (2003)

    Article  Google Scholar 

  8. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Unexpected magnetism in a dielectric oxide. Nat. Mater. 4, 173 (2005)

    Article  Google Scholar 

  9. T. Bora, B. Samantaray, S. Mohanty, S. Ravi, Ferromagnetism and bound magnetic polaron behavior in (In1−xCox) 2 O3. IEEE Trans. Magn. 47, 3991–3994 (2011)

    Article  Google Scholar 

  10. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74, 161306(R)-4 (2006)

    Article  Google Scholar 

  11. E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, R. Blinc, Anion vacancy-driven magnetism in incipient ferroelectric SrTiO3 and KTaO3 nanoparticles. J. Appl. Phys. 109(094105), 1–6 (2011)

    Google Scholar 

  12. S.G. Bahoosh, J.M. Wesselinowa, The origin of magnetism in perovskite ferroelectric ABO3 nanoparticles (A = K, Li; B = Ta, Nb or A = Ba, Sr, Pb; B = Ti). J. Appl. Phys. 112, 053907-6 (2012)

    Article  Google Scholar 

  13. S.B. Ogale, Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22, 3125–3155 (2010)

    Article  Google Scholar 

  14. E. Moreira, J.M. Henriques, D.L. Azevedoc, E.W.S. Caetano, V.N. Freire, E.L. Albuquerque, Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO3 from DFT calculations. J. Solid State Chem. 184, 921–928 (2011)

    Article  Google Scholar 

  15. A. Stanulis, S. Sakirzanovas, M. Van Bael, A. Kareiva, Sol–gel (combustion) synthesis and characterization of different alkaline earth metal (Ca, Sr, Ba) stannates. J. Sol–Gel Sci. Technol. 64, 643–652 (2012)

    Article  Google Scholar 

  16. A.K. Prodjosantoso, Q. Zhoub, B.J. Kennedy, Synchrotron X-ray diffraction study of the Ba1−xSrSnO3 solid solution. J. Solid State Chem. 200, 241–245 (2013)

    Article  Google Scholar 

  17. S. Ouni, S. Nouri, J. Rohlicek, R. Ben, Hassen, Structural and electrical properties of the sol–gel prepared Sr1−xErxSnO3−δ compounds. J. Solid State Chem. 192, 132–138 (2012)

    Article  Google Scholar 

  18. V. Thangadurai, P.S. Beurmann, W. Weppner, Mixed oxide ion and electronic conductivity in perovskite-type SrSnO3 by Fe substitution. Mater. Sci. Eng., B 100, 18–22 (2003)

    Article  Google Scholar 

  19. E.H. Mountstevens, J.P. Attfield, S.A.T. Redfern, Cation-size control of structural phase transitions in tin perovskites. J. Phys.: Condens. Matter 15, 8315–8326 (2003)

    Google Scholar 

  20. J. Ahmed, C.K. Blakely, S.R. Bruno, V.V. Poltavets, Synthesis of MSnO3 (M = Ba, Sr) nanoparticles by reverse micelle method and particle size distribution analysis by whole powder pattern modeling. Mater. Res. Bull. 47, 2282–2287 (2012)

    Article  Google Scholar 

  21. S. Wang, M. Lu, G. Zhou, H. Zhang, Z. Yang, Systematic investigations into SrSnO3 nanocrystals (II) photoluminescent properties of the as-synthesized nanocrystals. J. Alloys Compd. 452, 432–434 (2008)

    Article  Google Scholar 

  22. H.M. Yang, J.X. Shi, M.L. Gong, A new luminescent material, Sr2SnO4:Eu3+. J. Alloys Compd. 415, 213–215 (2006)

    Article  Google Scholar 

  23. D.K. Patel, A. Sengupta, B. Vishwanadh, V.K. Sudarsan, R.K. Vatsa, R. Kadam, S.K. Kulshreshtha, Local environments around Eu3+ and Eu2+ ions in dual light-emitting BaSnO3:Eu nanomaterials. Eur. J. Inorg. Chem. 2012, 1609–1619 (2012)

    Article  Google Scholar 

  24. Ž. Dohnalováa, N. Gorodylovaa, P. Šulcováa, M. Vlčekb, Synthesis and characterization of terbium-doped SrSnO3 pigments. Ceram. Int. 40, 12637–12645 (2014)

    Article  Google Scholar 

  25. L. Adolfova, Z. Dohnalova, P. Sulcova, New inorganic pigments based on SrSnO3 doped by V2O5. J. Therm. Anal. Calorim. 113, 161–167 (2013)

    Article  Google Scholar 

  26. S. Ouni, S. Nouri, H. Khemakhem, R. Ben Hassen, Phase transitions, dielectric properties, and vibrational study of stannates perovskites Sr1−xErxSnO3−δ. Mater. Res. Bull. 51, 136–140 (2014)

    Article  Google Scholar 

  27. Y. Li, H. Zhang, B. Guo, M. Wei, Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition. Electrochim. Acta 70, 313–317 (2012)

    Article  Google Scholar 

  28. G. Prathiba, S. Venkatesh, N. Harish, Kumar, Structural, magnetic and semiconducting properties of Fe doped SrSnO3. Solid State Commun. 150, 1436–1438 (2010)

    Article  Google Scholar 

  29. T. Yamashita, K. Ueda, Blue photoluminescence in Ti-doped alkaline-earth stannates. J. Solid State Chem. 180, 1410–1413 (2007)

    Article  Google Scholar 

  30. K.S. Roh, K.H. Ryu, C.H. Yo, Nonstoichiometry and Physical Properties of the SrSn1−x FexO3−y System. J. Solid State Chem. 142, 288–293 (1999)

    Article  Google Scholar 

  31. G.L. Lucena, A.S. Maia, A.G. Souz, I.M.G. Santos, Structural changes in Fe-doped SrSnO3 perovskites during thermal analysis. J. Therm. Anal. Calorim. 115, 137–144 (2014)

    Article  Google Scholar 

  32. K. Balamurugan, N. Harish Kumar, J. Arout Chelvane, P.N. Santhosh, Room temperature ferromagnetism in Fe-doped BaSnO3. J. Alloys Compd. 472, 9–12 (2009)

    Article  Google Scholar 

  33. S. Misra, K.I. Gnanasekaran, R.V. SubbaRao, V. Jayaramanan, T. Gnanasekaranan, Electrical conductivity and oxygen sensing behavior of SrSn1−xFexO3−δ (x = 0–0.2). J. Alloys Compd. 506, 285–292 (2010)

    Article  Google Scholar 

  34. C.W. Lee, D.W. Kimb, I.S. Cho, S. Park, S.S. Shin, S.W. Seo, K.S. Honga, Simple synthesis and characterization of SrSnO3 nanoparticles with enhanced photocatalytic activity. Int. J. Hydrogen Energy 37, 10557–10563 (2012)

    Article  Google Scholar 

  35. D. Melo, R.M.M. Marinho, F.T.G. Vieira, S.J.G. Lima, E. Longo, A.G. Souza, A.S. Maia, I.M.G. Santos, Influence of Cu(II) in the SrSnO3 crystallization. J. Therm. Anal. Calorim. 106, 513–517 (2011)

    Article  Google Scholar 

  36. S. Wang, M.K. Lu, G.J. Zhou, Y.Y. Zhou, A.Y. Zhang, Z.S. Yang, Systematic investigations into SrSnO3 nanocrystals (I) synthesis by using combustion and co-precipitation methods. J. Alloys Compd. 432, 265–268 (2007)

    Article  Google Scholar 

  37. J. Bohnemann, R. Libanori, M. Moreira, E. Longo, High-efficient microwave synthesis and characterization of SrSnO3. Chem. Eng. J. 155, 905–909 (2009)

    Article  Google Scholar 

  38. L. Chao, Z. Youqi, F. Shaoming, W. Huanxin, G. Yanghai, B. Lei, C. Rongfeng, Preparation and characterization of SrSnO3 nanorods. J. Phys. Chem. Solids 72, 869–874 (2011)

    Article  Google Scholar 

  39. S. Basu, D.K. Patel, J. Nuwad, V. Sudarsan, S.N. Jha, D. Bhattacharyya, R.K. Vatsa, S.K. Kulshreshtha, Probing local environments in Eu3+ doped SrSnO3 nano-rods by luminescence and Sr K-edge EXAFS techniques. Chem. Phys. Lett. 561–562, 82–86 (2013)

    Article  Google Scholar 

  40. A.A. Kumar, A. Kumar, J.K. Quamara, G.R. Dillip, S.W. Joo, J. Kumar, Fe(III) induced structural, optical, and dielectric behavior of cetyltrimethyl ammonium bromide stabilized strontium stannate nanoparticles synthesized by a facile wet chemistry route. RSC Adv. 5, 17202 (2015)

    Article  Google Scholar 

  41. M. Muralidharan, V. Anbarasu, A. Elayaperumal, K. Sivakumar, Carrier induced ferromagnetism in Yb doped SrTiO3 system. J. Mater. Sci.: Mater. Electron. 25, 4078–4087 (2014)

    Google Scholar 

  42. M. Ashokkumar, S. Muthukumaran, Tuning of energy gap, microstructure, optical and structural properties of Cr doped Zn0.96Cu0.04O nanoparticles. Powder Technol. 258, 157–164 (2014)

    Article  Google Scholar 

  43. M.C.F. Alves, M.R. Nascimento, S.J.G. Lima, P.S. Pizani, J.W.M. Espinosa, E. Longo, L.E.B. Soledade, A.G. Souza, I.M.G. Santos, Influence of synthesis conditions on carbonate entrapment in perovskite SrSnO3. Mater. Lett. 63, 118–120 (2009)

    Article  Google Scholar 

  44. M.C.F. Alves, S.C. Souza, H.H.S. Lima, M.R. Nascimento, M.R.S. Silva, J.W.M. Espinosa, S.J.G. Lima, E. Longod, P.S. Pizani, L.E.B. Soledadea, A.G. Souzaa, I.M.G. Santosa, Influence of the modifier on the short and long range disorder of stannate perovskites. J. Alloys Compd. 476, 507–512 (2009)

    Article  Google Scholar 

  45. N. Sharma, K.M. Shaju, G.V. Subba Rao, B.V.R. Chowdari, Anodic behaviour and X-ray photoelectron spectroscopy of ternary tin oxides. J. Power Sources 139, 250–260 (2005)

    Article  Google Scholar 

  46. D.J. Singh, Q. Xu, K.P. Ong, Strain effects on the band gap and Optical properties of perovskite SrSnO3 and BaSnO3. Appl. Phys. Lett. 104, 011910 (2014)

    Article  Google Scholar 

  47. D.K. Patel, B. Rajeswari, V. Sudarsan, R.K. Vatsa, R.M. Kadam, S.K. Kulshreshtha, Structural, luminescence and EPR studies on SrSnO3 nanorods doped with europium ions. Dalton Trans. 41, 12023 (2012)

    Article  Google Scholar 

  48. J.E. Wertz, J.R. Bolton, Electron spin resonance elementary theory and practical applications, 1st edn. (Chapman and Hall, New York, 1986)

    Google Scholar 

  49. K. Balamurugan, N. Harish Kumar, B. Ramachandran, M.S. Ramachandra Rao, J. AroutChelvane, P.N. Santhosh, Magnetic and optical properties of Mn-doped BaSnO3. Solid State Commun. 149, 884–887 (2009)

    Article  Google Scholar 

  50. M.A. Ruderman, C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. B 96, 99–102 (1954)

    Article  Google Scholar 

  51. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, B. Baretzky, E. Goering, Amorphous grain boundary layers in the ferromagnetic nano grained ZnO thin films. Thin Solid Films 520, 1192–1194 (2011)

    Article  Google Scholar 

  52. Y. Liao, H. Zhang, J. Li, G. Yu, Z. Zhong, F. Bei, L. Jia, S. Zhang, P. Zhong, Ferromagnetism at room temperature in Cr doped anodic titanium dioxide nanotubes. J. Appl. Phys. 115, 17C304-3 (2014)

    Article  Google Scholar 

  53. S. Sambasivam, D. Paul Joseph, J.H. Jeong, B.C. Choi, K.T. Lim, S.S. Kim, T.K. Song, Antiferromagnetic interactions in Er doped SnO2 DMS nanoparticles. J. Nanopart. Res. 13, 4623–4630 (2011)

    Article  Google Scholar 

  54. W. Wang, Z. Wang, Y. Hong, J. Tang, M. Yu, Structure and magnetic properties of Cr/Fe-doped SnO2 thin films. J. Appl. Phys. 99, 08M115 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muralidharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muralidharan, M., Anbarasu, V., Elaya Perumal, A. et al. Room temperature ferromagnetism in Cr doped SrSnO3 perovskite system. J Mater Sci: Mater Electron 28, 4125–4137 (2017). https://doi.org/10.1007/s10854-016-6032-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6032-x

Keywords

Navigation