Skip to main content
Log in

Fabrication, structural investigation and comparative optical characterization of copper polymer nanocomposites

  • T.C. : Solar Energy Materials and Applications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, a homemade ion beam deposition technique is used to fabricate nanocomposites films consisting of copper nanoparticles (CuNPs) embedded in a polyethylene terephthalate (PET) and in polytetrafluoroethylene (PTFE) polymers. Then study the comprehensive effect of the deposited CuNPs on the optical and structural properties of PET and PTFE polymers. The structural investigation of the PET and PTFE polymers as well as the Cu/PET and Cu/PTFE composites is carried out using X-ray diffraction (XRD). The XRD data showed CuNPs are deposited successfully on PET and PTFE films. The optical characterization of the prepared films is studied using UV–Vis spectroscopy techniques, to confirms the changes in the optical band gap Eg and carbon cluster number N. The UV–Vis optical absorption demonstrate a slight shift in the absorption edge towards visible region by increasing Cu deposition time on both PET and PTFE polymers. Increasing Cu deposition time is leads to slight decrease in optical energy band gap Eg and an increase in the numbers of carbon cluster N. The Eg is decreased from 3.8 to 2.2 eV for Cu/PET and from 3.1 to 2.3 eV for Cu/PTFE while N is increased from 82 to 244 for Cu/PET and from 113 to 224 for Cu/PTFE by increasing the Cu deposition time from 25 to 75 min. The obtained results of Cu/PET and Cu/PTFE polymer nanocomposites are opening new fields for applicable optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.H. Dhiaa, A.A. Taher, A.A. Diwan, S.M. Thahab, R.J. Azez, Study the thermal properties of PVP/CuNPs composite prepared by different concentrations, IOP Conference Series: Materials Science and Engineering. 870(1), 012153 (2020). https://doi.org/10.1088/1757-899X/870/1/012153

  2. A. Atta, S. Lotfy, E. Abdeltwab, Dielectric properties of irradiated polymer/multiwalled carbon nanotube and its amino functionalized form. J. Appl. Polym. Sci. 135(33), 46647 (2018)

    Google Scholar 

  3. Y. Yang, D. Zhao, J. Xu, Y. Dong, Y. Ma, X. Qin, H. Hamada, Mechanical and optical properties of silk fabric/glass fiber mat composites: an artistic application of composites. Text. Res. J. 88(8), 932–945 (2018)

    Google Scholar 

  4. S.B. Aziz, M.A. Brza, M.M. Nofal, R.T. Abdulwahid, S.A. Hussen, A.M. Hussein, W.O. Karim, A comprehensive review on optical properties of polymer electrolytes and composites. Materials 13(17), 3675 (2020)

    ADS  Google Scholar 

  5. A. Malik, R. Magisetty, V. Kumar, A. Shukla, B. Kandasubramanian, Dielectric and conductivity investigation of polycarbonate-copper phthalocyanine electrospun nonwoven fibres for electrical and electronic application. Polym. Plast. Technol. Mater. 59(2), 154–168 (2020)

    Google Scholar 

  6. G.S. Mann, L.P. Singh, P. Kumar, S. Singh, Green composites: a review of processing technologies and recent applications. J. Thermoplast. Compos. Mater. 33(8), 1145–1171 (2020)

    Google Scholar 

  7. F.M. Ali, R.M. Kershi, M.A. Sayed, Y.M. AbouDeif, Evaluation of structural and optical properties of Ce3+ ions doped (PVA/PVP) composite films for new organic semiconductors. Phys. B 538, 160–166 (2018)

    ADS  Google Scholar 

  8. V. Satulu, B. Mitu, V. Ion, V. Marascu, E. Matei, C. Stancu, G. Dinescu, Combining fluorinated polymers with Ag nanoparticles as a route to enhance optical properties of composite materials. Polymers 12(8), 1640 (2020)

    Google Scholar 

  9. E. Dogan, E. Ozkazanc, H. Ozkazanc, Multifunctional polyindole/nanometal-oxide composites: optoelectronic and charge transport properties. Synth. Met. 256, 116154 (2019)

    Google Scholar 

  10. K.C. Handique, P.K. Kalita, Effects of cadmium ion concentration on the optical and photo-response properties of CdSe/PVP nanocomposites for white light sensing application. Appl. Phys. A 126(9), 1–12 (2020)

    Google Scholar 

  11. A. Atta, Enhanced dielectric properties of flexible Cu/polymer nanocomposite films. Surf Innov (2020). https://doi.org/10.1680/jsuin.20.00020

    Article  Google Scholar 

  12. A.A. Reheem, M.A. Maksoud, A.H. Ashour, Surface modification and metallization of polycarbonate using low energy ion beam. Radiat. Phys. Chem. 125, 171–175 (2016)

    ADS  Google Scholar 

  13. B. Zhou, Z. Liu, B. Xu, A.V. Rogachev, M.A. Yarmolenko, A.A. Rogachev, Modification of Cu-PE-PTFE composite coatings on rubber surface by low-energy electron beam dispersion with glow discharge. Polym. Eng. Sci. 58(1), 103–111 (2018)

    Google Scholar 

  14. M.H. Behbahani, H. Fallah, H. Esfandiary, M.R. Pakmanesh, S.A. Mirjafari, The thickness and deposition rate effects on structural and optical properties of aluminized PET. Appl. Phys. A 126, 1–14 (2020)

    Google Scholar 

  15. A.M. Abdel Reheem, A. Atta, M.S. Abd-Elmonem, Irradiation and silver deposition for improvement of nasopharyngeal airway medical device properties. Surf. Rev. Lett. 24(03), 1750031 (2017)

    ADS  Google Scholar 

  16. F.A. Tantray, A. Agrawal, M. Gupta, J.T. Andrews, P. Sen, Effect of oxygen partial pressure on the structural and optical properties of ion beam sputtered TiO2 thin films. Thin Solid Films 619, 86–90 (2016)

    ADS  Google Scholar 

  17. M.M. Shehata, A.M. Abdelreheem, S.A. Waly, A.H. Ashour, Cu and Ag nanoparticles films deposited on glass substrate using cold cathode ion source. J. Inorg. Organomet. Polym. Mater. 27(3), 720–727 (2017)

    Google Scholar 

  18. A. Atta, Y.H. Fawzy, A. Bek, H.M. Abdel-Hamid, M.M. El-Oker, Modulation of structure, morphology and wettability of polytetrafluoroethylene surface by low energy ion beam irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 300, 46–53 (2013)

    ADS  Google Scholar 

  19. Y.H.A. Fawzy, H.M. Abdel-Hamid, M.M. El-Okr, A. Atta, Structural, optical and electrical properties of PET polymer films modified by low energy Ar+ ion beams. Surf. Rev. Lett. 25(03), 1850066 (2018)

    ADS  Google Scholar 

  20. A. Atta, A. Abdel-Galil, Improved surface properties of PTFE polymer films using broad ion source. Indian J. Pure Appl. Phys. 54(09), 551–556 (2016)

    Google Scholar 

  21. A. Biswas, O.C. Aktas, U. Schürmann, U. Saeed, V. Zaporojtchenko, F. Faupel, T. Strunskus, Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems. Appl. Phys. Lett. 84(14), 2655–2657 (2004)

    ADS  Google Scholar 

  22. E. Wongrat, S. Wongkrajang, A. Chuejetton, C. Bhoomanee, S. Choopun, Rapid synthesis of Au, Ag and Cu nanoparticles by DC arc-discharge for efficiency enhancement in polymer solar cells. Mater. Res. Innov. 23(2), 66–72 (2019)

    Google Scholar 

  23. M. Pouzesh, S. Nekouei, M.A.F. Zadeh, F. Keshtpour, S. Wang, F. Nekouei, Fabrication of stable copper nanoparticles embedded in nanocellulose film as a bionanocomposite plasmonic sensor and thereof for optical sensing of cyanide ion in water samples. Cellulose 26(8), 4945–4956 (2019)

    Google Scholar 

  24. P. Purohit, A. Samadi, P.M. Bendix, J.J. Laserna, L.B. Oddershede, Optical trapping reveals differences in dielectric and optical properties of copper nanoparticles compared to their oxides and ferrites. Sci. Rep. 10(1), 1–10 (2020)

    Google Scholar 

  25. A. Atta, H.M. Abdel-Hamid, Y.H.A. Fawzy, M.M. El-Okr, Characterization and optimization of low-energy broad-beam ion source. Emerg. Mater. Res. 8(3), 354–359 (2019)

    Google Scholar 

  26. G. Hatui, C.K. Das, Modification of CNT and its effect on thermo mechanical, morphological as well as rheological properties of polyether imide (PEI)/liquid crystalline polymer (LCP) blend system. J. Polym. Res. 20(2), 77 (2013)

    Google Scholar 

  27. S. Lotfy, A. Atta, E. Abdeltwab, Comparative study of gamma and ion beam irradiation of polymeric nanocomposite on electrical conductivity. J. Appl. Polym. Sci. 135(15), 46146 (2018)

    Google Scholar 

  28. P. Hankare, A. Jadhav, V. Bhuse, A. Khomane, K. Garadkar, Chemical deposition of thallium doped cadmium selenide thin films and their characterization. Mater. Chem. Phys. 80(1), 102–107 (2003)

    Google Scholar 

  29. K. Murali, B. Jayasuthaa, Brush electrodeposited CdSexTe1x thin films and their properties. Sol. Energy 83(6), 891–895 (2009)

    ADS  Google Scholar 

  30. A.N. Chakoli, J. Sui, M. Amirian, W. Cai, Crystallinity of biodegradable polymers reinforced with functionalized carbon nanotubes. J. Polym. Res. 18(6), 1249–1259 (2011)

    Google Scholar 

  31. C. Etrich, S. Fahr, M.K. Hedayati, F. Faupel, M. Elbahri, C. Rockstuhl, Effective optical properties of plasmonic nanocomposites. Materials 7(2), 727–741 (2014)

    ADS  Google Scholar 

  32. M. Bekhit, A. Sobhy, Z.I. Ali, S.M. Gafar, Efficient monitoring of dosimetric behaviour for copper nanoparticles through studying its optical properties. Radiochim. Acta 107(6), 523–529 (2019)

    Google Scholar 

  33. O. Kylián, J. Kratochvíl, J. Hanuš, O. Polonskyi, P. Solař, H. Biederman, Fabrication of Cu nanoclusters and their use for production of Cu/plasma polymer nanocomposite thin films. Thin Solid Films 550, 46–52 (2014)

    ADS  Google Scholar 

  34. M.K. Singh, R.K. Gautam, Synthesis of copper metal matrix hybrid composites using stir casting technique and its mechanical, optical and electrical behaviours. Trans. Indian Inst. Met. 70(9), 2415–2428 (2017)

    Google Scholar 

  35. X.D. Zhang, J.F. Xi, Y.Y. Shen, L.H. Zhang, F. Zhu, Z. Wang, C.L. Liu, Thermal evolution and optical properties of Cu nanoparticles in SiO2 by ion implantation. Opt. Mater. 33(3), 570–575 (2011)

    ADS  Google Scholar 

  36. G. Shanmugam, V. Krishnakumar, Effects of anhydrous AlCl3 dopant on the structural, optical and electrical properties of PVA–PVP polymer composite films. Indian J. Phys. 92(5), 605–613 (2018)

    ADS  Google Scholar 

  37. Ö.B. Mergen, E. Arda, S. Kara, Ö. Pekcan, Effects of GNP addition on optical properties and band gap energies of PMMA films. Polym. Compos. 40(5), 1862–1869 (2019)

    Google Scholar 

  38. H. Ahmed, H.M. Abduljalil, A. Hashim, Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electr. Electron. Mater. 20(3), 206–217 (2019)

    Google Scholar 

  39. A. Abdel-Galil, H.E. Ali, A. Atta, M.R. Balboul, Influence of nanostructured TiO2 additives on some physical characteristics of carboxymethyl cellulose (CMC). J. Radiat. Res. Appl. Sci. 7(1), 36–43 (2014)

    Google Scholar 

  40. J. Tauc, A. Menth, D. Wood, Optical and magnetic investigations of the localized states in semiconducting glasses. Phys. Rev. Lett. 25(11), 749 (1970)

    ADS  Google Scholar 

  41. J.Q. Almarashi, M.H. Abdel-Kader, Exploring nano-sulfide enhancements on the optical, structural and thermal properties of polymeric nanocomposites. J. Inorg. Organometall. Polym. Mater. 30, 3230 (2020). https://doi.org/10.1007/s10904-020-01482-0

  42. H.J. Jhuo, P.N. Yeh, S.H. Liao, Y.L. Li, Y.S. Cheng, S.A. Chen, Review on the recent progress in low band gap conjugated polymers for bulk hetero-junction polymer solar cells. J. Chin. Chem. Soc. 61(1), 115–126 (2014)

    Google Scholar 

  43. R. Kroon, M. Lenes, J.C. Hummelen, P.W. Blom, B. De Boer, Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym. Rev. 48(3), 531–582 (2008)

    Google Scholar 

  44. A.M. Abdel Reheem, A. Atta, T.A. Afify, Optical and electrical properties of argon ion beam irradiated PVA/Ag nanocomposites. Surf. Rev. Lett. 24(03), 1750038 (2017)

    ADS  Google Scholar 

  45. A. Atta, A.A. Reheem, E. Abdeltwab, Ion beam irradiation effects on surface morphology and optical properties of ZnO/PVA composites. Surf. Rev. Lett. (SRL) 27(09), 1–11 (2020)

    Google Scholar 

  46. A. Abdel-Galil, A. Atta, M.R. Balboul, Effect of low-energy oxygen ion beam treatment on the structural and physical properties of ZnO thin films. Surf. Rev. Lett. 2050019 (2020). https://doi.org/10.1142/S0218625X20500195

  47. R.A.M. Rizk, A.M. Abdul-Kader, M. Ali, Z.I. Ali, Influence of ion-beam bombardment on the optical properties of LDPE polymer blends. J. Phys. D Appl. Phys. 41(20), 205304 (2008)

    ADS  Google Scholar 

  48. H.M. Ragab, A. Rajeh, Structural, thermal, optical and conductive properties of PAM/PVA polymer composite doped with Ag nanoparticles for electrochemical application. J. Mater. Sci. Mater. Electron (2020). https://doi.org/10.1007/s10854-020-04233-6

  49. S.H. Kim, M. Kim, J.S. Park, S.J. Lee, Optical, electrical, and surface properties of Cu/plasma polymer fluorocarbon nanocomposite thin film fabricated using metal/polymer composite target. Appl. Sci. 9(7), 1296 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Atta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atta, A. Fabrication, structural investigation and comparative optical characterization of copper polymer nanocomposites . Appl. Phys. A 126, 810 (2020). https://doi.org/10.1007/s00339-020-03990-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03990-9

Keywords

Navigation