Skip to main content
Log in

Exploring Nano-sulfide Enhancements on the Optical, Structural and Thermal Properties of Polymeric Nanocomposites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Copper sulfide (CuS) nanoparticles were synthesized by solid-state reaction method under the flow of nitrogen. Polyvinyl alcohol/polyethylene glycol/copper sulfide (PVA/PEG:CuS) nanocomposite films with different concentrations of copper sulfide nanoparticles (1%, 3%, 5%) were prepared using casting technique. Structural and morphological properties of the prepared nano samples were investigated using X-ray diffraction data (XRD), transmission electron microscope and energy dispersive spectrometry techniques. The formation of nanocomposite films was confirmed by both XRD and fourier transform infrared techniques. Calculated and measured nano material particle size is almost similar. The characteristic peaks of nanocomposite films were found to be shifted towards higher wavenumber. The thermal stability behavior of row (PVA/PEG) blends and (PVA/PEG:CuS) nanocomposite films was examined using the thermogravimetric analysis technique. Samples doped with 5% CuS concentration revealed the highest thermal stability. The optical properties of undoped and nanocomposite films have been discussed in details using UV–Vis spectrophotometer. The optical transmittance revealed an apparent decrease (more than 40% for films doped 5% CuS). Different optical constants and dispersion parameters were discussed in detail and proved to be directly affected by nano doping concentrations. The optical energy gap values of polymer films decreased from 5.3 to 3.3 eV with the CuS nanoparticles incorporation. The study of the PVA/PEG nanocomposite films based on CuS nanoparticles has not been previously discussed. Therefore, this study is considered a new piece of work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.Y. Jua, R.R. Karri, N.M. Mubarak, L.S. Yon, C.H. Bing, M. Khalid, P. Jagadish, E.C. Abdullah, Modeling of methylene blue adsorption using functionalized Buckypaper/Polyvinyl alcohol membrane via ant colony optimization. Environ. Pollut. 259, 113940 (2020)

    CAS  Google Scholar 

  2. N.H. El Fewaty, A.M. El Sayed, R.S. Hafez, Synthesis, structural and optical properties of tin oxide nanoparticles and its CMC/PEG–PVA nanocomposite films. Composites 58(6), 1004–1016 (2016)

    Google Scholar 

  3. Y. Dai, Q. Tang, Z. Zhang, C. Yu, H. Li, L. Xu, S. Zhang, Z. Zou, Enhanced mechanical, thermal, and UV-shielding properties of poly(vinyl alcohol)/metal–organic framework nanocomposites. RSC Adv. 8, 38681–38688 (2018)

    CAS  Google Scholar 

  4. E.A. El-sayd, A.A. Ibrahiem, R.M. Ahmed, Effect of cobalt chloride on the optical properties of PVA/PEG blend. Arab. J. Nucl. Sci. Appl. 52(1), 22–32 (2019)

    Google Scholar 

  5. D. Ravindran, P. Vickraman, XRD, Conductivity studies on PVA-PEG blend based Mg2+ ion conducting polymer electrolytes. Int. J. Sci. Eng. Appl. 1(1), 72–74 (2012)

    Google Scholar 

  6. G. Mohammed, A. Mohamed El Sayed, Structural, morphological, optical and dielectric properties of M3+/PVA/PEG SPE films (M = La, Y, Fe or Ir). Polym. Adv. Technol. 30(3), 1–15 (2018)

    Google Scholar 

  7. E. Serag, A. El-Nemr, A. El-Maghraby, Synthesis of highly effective novel graphene oxide-polyethylene glycol-polyvinyl alcohol nanocomposite hydrogel for copper removal. J. Water Environ. Nanotechnol. 2(4), 223–234 (2017)

    CAS  Google Scholar 

  8. K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, S.K.K. Pasha, M.A. AlMaadeed, K. Chidambaram, Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J. Polym. Res. 23(159), 1–13 (2016)

    CAS  Google Scholar 

  9. A. Mohammed, M.H. Suhail, M. Ghazi, Structural and optical properties for PVA-PEG-MnCl2 composites. Iraq. J. Phys. 15(32), 99–113 (2017)

    Google Scholar 

  10. Z. Ramdhan, M. Ali, A. Khalaf, A. Hashim, H. Hakim, Optical properties of (PVA-PEG-PF, PP) composites. Int. J. Sci. Res. 3(10), 1725–1728 (2014)

    Google Scholar 

  11. M.T. Ramesan, Synthesis, characterization, and properties of new conducting polyaniline/copper sulfide nanocomposites. Polym. Eng. Sci. 54(2), 438–445 (2014)

    CAS  Google Scholar 

  12. M. Ghoswami, R. Ghosh, G. Chakraborty, K. Gupta, A.K. Meikap, Optical and electrical properties of polyaniline-cadmium sulfide nanocomposite. Polym. Compos. 32(12), 2017–2027 (2011)

    CAS  Google Scholar 

  13. J. Osuntokun, PA Ajibade, Structural and thermal studies of ZnS and CdS nanoparticles in polymer matrices. J. Nanomater. 13, 1–15 (2016)

    Google Scholar 

  14. Q. Lu, F. Gao, D. Zhao, One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Lett. 2(7), 725–728 (2002)

    CAS  Google Scholar 

  15. M.T. Ramesan, Synthesis, characterization, and conductivity studies of polypyrrole/copper sulfide nanocomposites. J. Appl. Polym. Sci. 128(3), 1540–1546 (2013)

    CAS  Google Scholar 

  16. P. Bera, S. Il Seok, Nanocrystalline copper sulfide of varying morphologies and stoichiometries in a low temperature solvothermal process using a new single-source molecular precursor. Solid State Sci. 14, 1126–1132 (2012)

    CAS  Google Scholar 

  17. S.S. Dhasade, J.S. Patil, J.H. Kim, S.H. Han, M.C. Rath, V.J. Fulari, Synthesis of CuS nanorods grown at room temperature by electrode position method. Mater. Chem. Phys. 137, 353–358 (2012)

    CAS  Google Scholar 

  18. S.J. Abbas, M. Rani, S.K. Tripathi, Preparation and characterization of nanocomposite between poly(aniline-co-m-chloroaniline)–copper sulfide nanoparticles. Physica B 443, 107–113 (2014)

    CAS  Google Scholar 

  19. M. Diantoro, L.A. Sari, T. Istirohah, A.D. Kusumawati, Nasikhudin, Sunaryono, Control of dielectric constant and anti-bacterial activity of PVA-PEG/x-SnO2 nanofiber. Mater. Sci. Eng. 367, 1–8 (2018)

    Google Scholar 

  20. M. Mohsen, A. Ashry, A.M. Ismail, F. El-Sayed, D.M. Abd El-Maqsoud, K.R. Mahmoud, Comparative effect of gamma irradiation on the nano-free volume and electrical properties of PVA/PEG/reduced graphene oxide nanocomposites. Arab. J. Nucl. Sci. Appl. 52(4), 175–189 (2019)

    Google Scholar 

  21. F.H. Falqi, O.A. Bin-Dahman, M. Hussain, M.A. Al-Harthi, Preparation of miscible PVA/PEG blends and effect of graphene concentration on thermal, crystallization, morphological, and mechanical properties of PVA/PEG (10wt%) blend. Int. J. Polym. Sci. 2018, 1–11 (2018)

    Google Scholar 

  22. B.H. Rabee, N.A. Hadi, Study the effect of nano-Mgo On the optical properties of (PVA-PEG-Mgo) nanocomposites. Int. J. Eng. Res. Technol. 3(6), 2257–2260 (2014)

    Google Scholar 

  23. S. El-Gamal, A.M. El Sayed, Physical properties of the organic polymeric blend (PVA/PAM) modified with MgO nanofillers. J. Compos. Mater. 53(20), 2831–2847 (2019)

    CAS  Google Scholar 

  24. R.I. Agool, J.K. Kadhim, A. Hashim, Synthesis of (PVA-PEG-PVP-MgO) nanobiomaterials and their application. Adv. Environ. Biol. 9(27), 101 (2015)

    CAS  Google Scholar 

  25. M. Joshi, R.P. Singh, Cross linking polymers (PVA & PEG) with TiO2 nanoparticles for humidity sensing. Sens. Trans. J. 110(11), 105–111 (2009)

    CAS  Google Scholar 

  26. H. Amiri, M. Mohsennia, Impedance study of PVA/PEG/LiClO4 /TiO2 nanocomposite solid polymer blend electrolyte. J. Mater. Sci. 28, 4586–4592 (2017)

    CAS  Google Scholar 

  27. B.H. Rubee, S.A. AlHussien, Study of optical properties for (PVA-PEG-ZnO) nanocomposites. Int. J. Sci. Res. (IJSR) 5(5), 1794–1799 (2016)

    Google Scholar 

  28. H.M. Mohssin, Investigation of optical properties for (PVA-PEG-Ag) polymer nanocomposites films. Int. J. Eng. Res. Technol. (IJERT) 6(7), 164–170 (2017)

    Google Scholar 

  29. S.A. Nouh, K. Benthami, A.A. Alhazime, J.Q.M. Almarashi, Structural, thermal and optical behavior of laser irradiation-induced PVA–PEG–Ag nanocomposites. Radiat. Eff. Defects Solids 172(3), 275–285 (2017)

    CAS  Google Scholar 

  30. S.A. Nouh, K. Benthami, M.M. Abutalib, X-ray irradiation-induced changes in (PVA–PEG–Ag) polymer nanocomposites films. Radiat. Eff. Defects Solids 171(1), 135–145 (2016)

    CAS  Google Scholar 

  31. W.R. Rolim, J.C. Pieretti, D.L.S. Reno, B.A. Lima, M.H.M. Nascimento, F.N. Ambrosio, C.B. Lombello, M. Brocchi, A.C.S. de Souza, A.B. Seabra, Antimicrobial activity and cytotoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications. ACS Appl. Mater. Interfaces 11, 6589–6604 (2019)

    CAS  PubMed  Google Scholar 

  32. O.G.H. Abdullah, S.A. Saleem, Effect of copper sulfide nanoparticles on the optical and electrical Behavior of poly(vinyl alcohol) films. J. Electron. Mater. 45, 5910–5920 (2016)

    CAS  Google Scholar 

  33. M.T. Ramesan, Fabrication and characterization of conducting nanomaterials composed of copper sulfide and polyindole. Polym. Compos. 33(12), 2169–2176 (2012)

    CAS  Google Scholar 

  34. H. Jin, Y. Hou, A. Tang, X. Meng, F.T. Feng, Photoconductive properties of MEH-PPV/CuS-nanopartile composites. Chin. Phys. Lett. 23(3), 693–696 (2006)

    CAS  Google Scholar 

  35. Z.K. Heiba, M.B. Mohamed, M.H. Abdel Kader, Experimental and theoretical investigations on intermediate band in doped nano-SnS2. Electron. Mater. 47(5), 2945–2953 (2018)

    CAS  Google Scholar 

  36. M.B. Mohamed, M.H. Abdel-Kader, Effect of excess oxygen content within different nano-oxide additives on the structural and optical properties of PVA/PEG blend. Appl. Phys. A 125(209), 1–11 (2019)

    Google Scholar 

  37. L. Lutterotti, Nucl. Instrum. Methods Phys. Res. B 268, 334 (2010)

    CAS  Google Scholar 

  38. J. Rodríguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993)

    Google Scholar 

  39. M.B. Mohamed, M.H. Abdel-Kader, J.Q.M. Almarashi, Role of Cu/S ratio and Mg doping on modification of structural and optical characteristics of nano CuS. Int. J. Appl. Ceram. Technol. 2019, 1–9 (2019)

    Google Scholar 

  40. B.G. Shetty, V. Crasta, N.B.R. Kumar, K. Rajesh, R. Bairy, P.S. Patile, Promising PVA/TiO2, CuO filled nanocomposites for electrical and third order nonlinear optical applications. Opt. Mater. 95, 1–10 (2019)

    Google Scholar 

  41. V. Balan, C. Mihai, F. Cojocaru, C. Uritu, G. Dodi, D. Botezat, I. Gardikiotis, Vibrational spectroscopy fingerprinting in medicine: from molecular to clinical practice. Materials 12(18), 1–40 (2019)

    Google Scholar 

  42. F.H. Falqiet, O.A. Bin-Dahman, M. Hussain, M.A. Al-Harth, Preparation of miscible PVA/PEG blends and effect of graphene concentration on thermal, crystallization, morphological, and mechanical properties of PVA/PEG (10 wt%) blend. Int. J. Polym. Sci. 2018, 1–11 (2018)

    Google Scholar 

  43. M. Pandey, G.M. Joshi, N.N. Ghosh, Electrical performance of lithium ion based polymer electrolyte with polyethylene glycol and polyvinyl alcohol network. Int. J. Polym. Mater. Polym. Biomater. 65(15), 759–768 (2016)

    CAS  Google Scholar 

  44. M. Abdelaziz, Cerium (III) doping effects on optical and thermal properties of PVA films. Physica B 406(6–7), 1300–1307 (2011)

    CAS  Google Scholar 

  45. K. Varatharajan, S. Govindaraj, Structural, optical and dielectric properties of PbS-PVA-PEG nanocomposite film. Sci. Adv. Mater. 4(12), 1247–1253 (2012)

    Google Scholar 

  46. M. Diantoro, T. Istirohah, A. Fuad, I. Ristanti, Dielectric properties and bioactivity of PVA/PEG/TiO2 fibers for capacitive based body sensor. J. Phys. 1040, 1–9 (2018)

    Google Scholar 

  47. E.M. Abdelrazek, I.S. Elashmawi, A. El-khodary, A. Yassin, Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr. Appl. Phys. 10, 607–613 (2010)

    Google Scholar 

  48. R. Singh, S.G. Kulkarni, Thermal and mechanical properties of nano-titanium dioxide-doped polyvinyl alcohol. Polym. Bull. 70, 1251–1264 (2013)

    CAS  Google Scholar 

  49. C.H.L. Raju, J.L. Rao, B.C.V. Reddy, K.V. Brahmam, Thermal and IR studies on copper doped polyvinyl alcohol. Bull. Mater. Sci. 30, 215–218 (2007)

    CAS  Google Scholar 

  50. A.M. Shehap, Thermal and spectroscopic studies of polyvinyl alcohol/sodium carboxy methyl cellulose blends. Egypt. J. Solids 31, 75–91 (2008)

    Google Scholar 

  51. N.H. El Fewaty, A.M. El Sayed, R.S. Hafez, Synthesis, structural and optical properties of tin oxide nanoparticles and its CMC/PEG–PVA nanocomposite films. Compos. Polym. Sci. Ser. A 58(6), 1004–1016 (2016)

    Google Scholar 

  52. K. Kannan, L.G. Prasad, L.G. Agilan, N. Muthukumarasamy, Investigations on Ag2S/PVA-PEG polymer nanocomposites: an effectual nonlinear optical material. Optik 170, 10–16 (2018)

    CAS  Google Scholar 

  53. B.H. Rabee, F.Z. Razooqi, M.H. Shinen, Investigation of optical properties for (PVA-PEG-Ag) polymer nanocomposites films. Chem. Mater. Res. 7(4), 103–109 (2015)

    Google Scholar 

  54. A.M. Shehap, D.S. Akil, Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films. Int. J. Nanoelectron. Mater. 9, 17–36 (2016)

    Google Scholar 

  55. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J. Mater. Sci. 26, 8022–8028 (2015)

    CAS  Google Scholar 

  56. G. Attia, M.F.H. Abd El-Kader, Structural, optical and thermal characterization of PVA/2HEC polyblend films. Int. J. Electrochem. Sci. 8, 5672–5687 (2013)

    CAS  Google Scholar 

  57. A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites:structural, optical and electrical properties for humidity sensors. J. Inorg. Organometal. Polym. Mater. 28, 1394–1401 (2018)

    CAS  Google Scholar 

  58. K. Ramamohan, V.B.S. Achari, A.K. Sharma, L. Xiuyang, Electrical and structural characterization of PVA/PEG polymer blend electrolyte films doped with NaClO4. Ionics 21(5), 1333–1340 (2015)

    CAS  Google Scholar 

  59. N. Ahlawat, S. Sanghi, A. Agarwal, S. Rani, Effect of Li2O on structure and optical properties of lithium bismosilicate glasses. J. Alloys Compd. 480, 516–520 (2009)

    CAS  Google Scholar 

  60. M.Q.A. Al-Gunaid, A.M.N. Saeed, Siddaramaiah, Effects of the electrolyte content on the electrical permittivity, thermal stability, and optical dispersion of poly(vinyl alcohol)–cesium copper oxide–lithium perchlorate nanocomposite solid-polymer electrolytes. J. Appl. Polym. Sci. 135(8), 1–14 (2018)

    Google Scholar 

  61. E.A. Costner, B.K. Long, C. Navar, S. Jockusch, X. Lei, P. Zimmerman, A. Campion, N.J. Turro, C.G. Willson, Fundamental optical properties of linear and cyclic alkanes: VUV absorbance and index of refraction. J. Phys. Chem. A 113, 9337–9347 (2009)

    CAS  PubMed  Google Scholar 

  62. M. Born, E. Wolf, Principles of Optics, 2nd edn. (Pergamon Press, New York, 1964)

    Google Scholar 

  63. S.A. Korff, G. Breit, Optical dispersion. Rev. Mod. Phys. 4(3), 471–503 (1932)

    Google Scholar 

  64. D. Beysens, P. Calmettes, Temperature dependence of the refractive indices of liquids: deviation from the Lorentz-Lorenz formula. J. Chem. Phys. 66, 766–771 (1977)

    CAS  Google Scholar 

  65. A.A. Alhazime, M.B. Mohamed, M.H. Abdel-Kader, Effect of Zn1−x MgxS doping on structural, thermal and optical properties of PVA. J. Inorg. Organometal. Polym. Mater. 29, 436–443 (2019)

    CAS  Google Scholar 

  66. S.A. Nouh, M.H. Abdel-kader, M.B. Mohamed, Structural and optical modifications in polyvinyl alcohol due to Cr2O3 nanoparticles additives concentration, and gamma irradiation. Adv. Polym. Technol. 36(3), 1–5 (2017)

    Google Scholar 

  67. A.M. El Sayed, Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via γ-rays irradiation. Nucl. Instrum. Methods Phys. Res. B 321, 41–48 (2014)

    Google Scholar 

  68. G. Maroulis, D. Xenides, Dipole, dipole–quadrupole, and dipole–octopole polarizability of adamantane, C10H16, from refractive index measurements, depolarized collision-induced light scattering, conventional ab initio and density functional theory calculations. J. Chem. Phys. 115(17), 7957–7967 (2001)

    CAS  Google Scholar 

  69. D. Sainova, A. Zen, H. Nothofer, U. Asawapirom, U. Scherf, R. Hagen, T. Bieringer, S. Kostromine, D. Neher, Photoaddressable alignment layers for fluorescent polymers in polarized electroluminescence devices. Adv. Funct. Mater. 12(1), 49–57 (2002)

    CAS  Google Scholar 

  70. I. Simonsen, Optics of surface disordered systems. A random walk through rough surface scattering phenomena. Eur. Phys. J. Spec. Top. 181, 1–103 (2010)

    CAS  Google Scholar 

  71. M.B. Mohamed, M.H. Abdel-Kader, A.A. Alhazime, Structural and optical properties of doped ZnO/SiO2 nanocomposite. Int. J. Appl. Ceram. Technol. 16, 1209–1217 (2019)

    CAS  Google Scholar 

  72. I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. 21, 397–403 (2017)

    CAS  Google Scholar 

  73. F.H. Abd El-Kader, S.A. Gafer, A.F. Basha, S.I. Bannan, M.A.F. Basha, Thermal and optical properties of gelatin/poly(vinylalcohol) blends. J. Appl. Polym. Sci. 118, 413–420 (2010)

    CAS  Google Scholar 

  74. S.H. Wemple, M. Di Domenico Jr., Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 4, 1138–1151 (1971)

    Google Scholar 

  75. E. Marquez, P. Nagels, J.M. Gonzalez-Leal, A.M. Bernal-Otiva, E. Sleeckx, R. Callaerts, Vacuum 52, 55–60 (1999)

    CAS  Google Scholar 

  76. A.H. Ammar, A.M. Farid, M.A.M. Seyam, Heat treatment effect on the structural and optical properties of AgInSe2 thin films. Vacuum 66, 27–38 (2002)

    CAS  Google Scholar 

  77. A.H. Ammar, Studies on some structural and optical properties of ZnxCd1−xTe thin films. Appl. Surf. Sci. 201, 9–19 (2002)

    CAS  Google Scholar 

  78. K. Tanaka, Optical properties and photo induced changes in amorphous As-S films. Thin Solid Films 66, 271–279 (1980)

    CAS  Google Scholar 

  79. S.H. Wemple, Ionicity, valency, and band inversion in Pb1-xSnxTe. Phys. Lett. 45A(5), 401–403 (1973)

    Google Scholar 

  80. B.M. Baraker, B. Lobo, Dispersion parameters of cadmium chloride doped PVA-PVP blend films. J. Polym. Res. 24, 84 (2017)

    Google Scholar 

  81. A.F. Mansour, A. Elfalaky, F.A. Maged, Synthesis, characterization and optical properties of PANI/PVA blends. IOSR J. Appl. Phys. 7(4), 37–45 (2015)

    Google Scholar 

  82. C.H. Kittel, Introduction to Solid State Physics, 6th edn. (Wiley, Hoboken, 1986)

    Google Scholar 

  83. M. Caglar, M. Zor, S. Ilican, Y. Caglar, Effect of indium incorporation on the optical properties of spray pyrolyzed Cd0.22 Zn0.78S thin films. J. Phys. 56(3), 277–287 (2006)

    CAS  Google Scholar 

  84. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. 26(7), 5303–5309 (2015)

    CAS  Google Scholar 

  85. R.R. Karria, M. Tanzifi, M.T. Yarakic, J.N. Sahu, Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network. J. Environ. Manag. 223, 517–529 (2018)

    Google Scholar 

  86. Z. Wu, L. Li, Y. Mu, X. Wan, Synthesis and adhesive property study of a mussel-inspired adhesive based on poly(vinyl alcohol) backbone. Macromol. Chem. Phys. 218(16), 1–9 (2017)

    Google Scholar 

  87. Q. Bai, G. Zhang, B. Xu, X. Feng, H. Jiang, H. Li, Thermal and water dual-responsive shape memory poly(vinyl alcohol)/Al2O3 nanocomposite. RSC Adv. 5(111), 91213–91217 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Abdel-Kader.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almarashi, J.Q.M., Abdel-Kader, M.H. Exploring Nano-sulfide Enhancements on the Optical, Structural and Thermal Properties of Polymeric Nanocomposites. J Inorg Organomet Polym 30, 3230–3240 (2020). https://doi.org/10.1007/s10904-020-01482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01482-0

Keywords

Navigation