Skip to main content
Log in

Microstructural, optical and magnetic properties of TiO2:Fe:M (M = Ga, Zn) dilute magnetic semiconductor nanoparticles: a comparative study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Fe/Ga- and Fe/Zn-codoped titanium oxide nanoparticles were prepared by co-precipitation technique. The samples were characterized by several methods: energy-dispersive X‐ray fluorescence, X‐Ray Diffraction, UV–visible absorption, and magnetization methods. The host Fe-doped TiO2 nanoparticles were co-doped either with Ga3+ or Zn2+ ions aiming to compare their effects on the possible creation of long-range (LR) interaction between Fe2+−Fe2+ dopant ions. The hydrogenation of the samples was necessary to fabricate the dilute magnetic semiconductor based on TiO2 by its creation of O-vacancies (VO). It was established that Zn/VO defects are energetically favourable for the LR Fe3+−Fe3+ ferromagnetic coupling in Fe/Zn-codoped anatase TiO2 by the superexchange interaction through Zn ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Rahimi, R.A. Pax, E. Mac, A. Gray, Review of functional titanium oxides I: TiO2 and its modifications. Prog. Solid State Chem. 44(3), 86–105 (2016). https://doi.org/10.1016/j.progsolidstchem.2016.07.002

    Article  Google Scholar 

  2. D. Reyes-Coronado, G. Rodrıguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605 (2008)

    Article  ADS  Google Scholar 

  3. P.V. Kala, B.T. Rao, K. Srinivasarao, Structural, optical and gas sensing properties of TiO2-MoO3, thin films. Int. J. Thin. Fil. Sci. Tec. 8(3), 163–174 (2019). https://doi.org/10.18576/ijtfst/080309

    Article  Google Scholar 

  4. V. Sivaranjani, P. Deepa, P. Philominathan, Thin Films of TiO2-MoO3 binary oxides obtained by an economically viable and simplified spray pyrolysis technique for gas sensing application. Int. J. Thin. Fil. Sci. Tec. 4, 125–131 (2015). https://doi.org/10.18576/ijtfst/080309

    Article  Google Scholar 

  5. B. Qi, S. Olafsson, H.P. Gislason, Vacancy defect-induced d0 ferromagnetism in undoped ZnO nanostructures: controversial origin and challenges. Prog. Mater. Sci. 90, 45–74 (2017)

    Article  Google Scholar 

  6. R. Marchand, L. Brohan, M. Tournoux, TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 15(8), 1129–1133 (1980). https://doi.org/10.1016/0025-5408(80)90076-8

    Article  Google Scholar 

  7. J. Tian, H. Gao, H. Deng, L. Sun, H. Kong, P. Yang, J. Chu, Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon(100) substrates by sol-gel process. J. Alloy. Compds. 581, 318–323 (2013)

    Article  Google Scholar 

  8. Lu. Xuefeng, Xu. Tingting Zhao, Junqiang Ren Gao, Xiaobin Yan, Peiqing La, Investigation of Mo-, Pt-, and Rh-doped rutile TiO2 based on first-principles calculations. AIP Adv. 8, 075014 (2018). https://doi.org/10.1063/1.5038776

    Article  ADS  Google Scholar 

  9. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014)

    Article  Google Scholar 

  10. A. Di Paola, M. Bellardita, L. Palmisano, Brookite, the least known TiO2 photocatalyst. Catalysts 3, 36–7 (2013). https://doi.org/10.3390/catal3010036

    Article  Google Scholar 

  11. R. Mukherji, V. Mathur, A. Samariys, M. Mukherji, Experimental and theoretical assessment of Fe-doped indium-oxide-based dilute magnetic semiconductors. Phil. Mag. 99, 2285–2302 (2019)

    Article  ADS  Google Scholar 

  12. A. Gupta, R. Zhang, P. Kumar, V. Kumar, A. Kumar, Nano-structured dilute magnetic semiconductors for efficient spintronics at room temperature. Magnetochemistry 6(1), 15 (2020). https://doi.org/10.3390/magnetochemistry6010015

    Article  Google Scholar 

  13. A.C.M. Padilha, H. Raebiger, A.R. Rocha, G.M. Dalpian, Charge storage in oxygen deficient phases of TiO2: defect Physics without defects. Sci. Rep. 6–28871, 1–6 (2016)

    Google Scholar 

  14. Y. Xu, C. Zhang, L. Zhang, X. Zhang, H. Yao, J. Shi, Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance Energy. Environ. Sci. Technol. 9, 2410–2417 (2016)

    Google Scholar 

  15. A. Bouaine, N. Brihi, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, A. Dinia, Structural, optical, and magnetic properties of co-doped SnO2 Powders synthesized by the co-precipitation technique. J. Phys. Chem. C 111, 2924–2928 (2007)

    Article  Google Scholar 

  16. Md.K. Debashis Roy, S.M. Hossain, Milon Hasan, Md. AbdulHossain, F. Ahmed, Understanding the atomistic origin of the magnetic phases in Cobalt-TM (V, Nb, Ta, Zr, Hf, W) pair co-doped boron nitride monolayer and the hydrogenation effect. Physica E: Low-dimensional Syst Nanostructures 125, 114359 (2012)

    Google Scholar 

  17. A.A. Dakhel, M. El-Hilo, M. Bououdina, Ferromagnetic properties of Cu- and Fe-codoped nanocrystalline CdO powders: annealing in hydrogen promote long-range ferromagnetic order. Adv. Pow. Tech. 25, 1839–1844 (2014)

    Article  Google Scholar 

  18. M. El-Hilo, A.A. Dakhel, Z.J. Yacoob, Magnetic interactions in Co2+ doped ZnO synthesized by co-precipitation method: efficient effect of hydrogenation on the long-range ferromagnetic order. J. Magn. Magn. Mater. 482, 125–134 (2019)

    Article  ADS  Google Scholar 

  19. A.A. Dakhel, Hydrogenation tuned the created ferromagnetic properties of Ni doped nano- ZnO. Appl. Phys. A 123(214), 2–8 (2017)

    Google Scholar 

  20. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  21. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, USA, 1996), p. 614

    Google Scholar 

  22. A.A. Dakhel, Structural, magnetic, and optical properties of degenerated Ni and (Ga/Zn) co-doped TiO2 nanocomposites. Appl. Phys. A 126(12), 1–9 (2020)

    Article  Google Scholar 

  23. S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles. Chinese Sci. Bulletin 56, 1639–1657 (2011)

    Article  ADS  Google Scholar 

  24. Yu. Yanlong, J. Wang, W. Li, W. Zheng, Y. Cao, Doping mechanism of Zn2+ ions in Zn-doped TiO2 prepared by a sol–gel method. CrystEngComm 17, 5074–5080 (2015). https://doi.org/10.1039/C5CE00933B

    Article  Google Scholar 

  25. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines. J. Appl. Cryst. 32, 36 (1999)

    Article  Google Scholar 

  26. K. Tanaka, Y. Akiniwa, diffraction measurements of residual macrostress and microstress using X-rays, synchrotron and neutrons, Jap. Soc. Mech. Eng. (JSME) Int. J. A 47(3), 252–263 (2004). https://doi.org/10.1299/jsmea.47.252

    Article  Google Scholar 

  27. M. Pozzo, D. Alfe, Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) surface. Int. J. Hydrog. Energy 34, 1922–1930 (2009)

    Article  ADS  Google Scholar 

  28. A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Fisica S 53, 18–22 (2007)

    Google Scholar 

  29. J. Tauc, F. Abelesn (eds.), Optical Properties of Solids (North Holland, Springer, 1969), pp. 123–136

    Book  Google Scholar 

  30. D. Sojic, V. Despotovic, B. Abramovic, N. Todorova, T. Giannakopoulou, C. Trapalis, Photocatalytic degradation of mecoprop and clopyralid in aqueous suspensions of nanostructured N-doped TiO2. Molecules 15, 2994–3009 (2010). https://doi.org/10.3390/molecules15052994

    Article  Google Scholar 

  31. F.N.C. Anyaegbunam, C. Augustine, A study of optical gap associated urbach energy tail of chemically deposited metal oxides binary films. Dig. J. Nanomater. Bios. 13, 847–856 (2018)

    Google Scholar 

  32. N.J. Kim, Y.H. La, S.H. Im, B.K. Ryu, Optical and structural properties of Fe–TiO2 thin films prepared by sol–gel dip coating. Thin Solid Films 518, 156–160 (2010)

    Article  ADS  Google Scholar 

  33. G. Wei, L. Wei, Y. Chen, S. Yan, Y. Tian, L. Mei, J. Jiao, Magnetic coupling and electric transport in Nb, Fe co-doped rutile TiO2 epitaxial films. J. Alloy. Compds. 695, 2261–2265 (2017)

    Article  Google Scholar 

  34. J.I. Pankove, Optical Processes in Semiconductors (Dover, NY, 1975), p. 36

    Google Scholar 

  35. The web page of the University of the West Indies at Mona, Jamaica, The Dept. of Chemistry, http://wwwchem.uwimona.edu.jm/spectra/MagMom.html. accessed May. 2020.

  36. J. Chen, P. Rulis, L. Ouyang, S. Satpathy, W.Y. Ching, Vacancy-enhanced ferromagnetism in Fe- doped rutile TiO2. Phys. Rev. B 74, 235207 (2006)

    Article  ADS  Google Scholar 

  37. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    Article  ADS  Google Scholar 

  38. M. Yeganeha, N. Shahtahmasebi, A. Kompany, M. Karimipour, F. Razavi, N.H.S. Nasralla, L. Šiller, The magnetic characterization of Fe doped TiO2 semiconducting oxide NPs synthesized by sol–gel method. Phys. B 511, 89–98 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dakhel.

Ethics declarations

Conflict of interest

I declare that there are no conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhel, A.A. Microstructural, optical and magnetic properties of TiO2:Fe:M (M = Ga, Zn) dilute magnetic semiconductor nanoparticles: a comparative study. Appl. Phys. A 127, 440 (2021). https://doi.org/10.1007/s00339-021-04588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04588-5

Keywords

Navigation