Skip to main content
Log in

Thermal diffusivity monitoring during the stages of formation of core–shell structures of SiO2@Au

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The thermal and optical properties in the formation of gold nanoshells on SiO2 were studied by thermal lens (TL) and absorption spectroscopy. The formation of SiO2@Au particles was realized in four stages: First, SiO2 spheres were synthesized using the Stöber method. Later the attachment of amino groups and the adsorption of hydroxide gold nanoparticles on surface of silicon dioxide were realized. Finally, the growth of gold shell was obtained. The UV–Vis spectrum of SiO2@Au nanostructures showed an absorption band in the near-infrared region around of 740 nm associated with the presence of a gold shell on the dielectric platform. Transmission electron microscopy and scanning electron microscopy confirmed the formation of well-defined gold nanoshell on SiO2 spheres. Silicon dioxide nanospheres with an average size of 293 nm and Au-nanoshell with thicknesses of ~ 14 nm were obtained. The high crystalline quality of Au-nanoshell was demonstrated by X-ray diffraction. The thermal diffusivity during the different steps of formation of the gold nanoshell was studied using absorption spectroscopy and the mode-mismatched TL. A redshift of absorption band optic was observed by UV–Vis, and a very significant increase in the thermal diffusivity as the Au shell was completed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas, Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998). https://doi.org/10.1016/S0009-2614(98)00277-2

    Article  ADS  Google Scholar 

  2. R. Weissleder, A clearer vision for in vivo imaging. Nature 19, 316–317 (2001). https://doi.org/10.1038/86684

    Article  Google Scholar 

  3. L. Tang, L. Liu, H.B. Elwing, Complement activation and inflammation triggered by model biomaterial surfaces. J. Biomed. Mater. Res. 41, 333–340 (1998). https://doi.org/10.1002/(SICI)1097-4636(199808)41:2%3c333:AID-JBM19%3e3.0.CO;2-L

    Article  Google Scholar 

  4. T. Ji, V.G. Lirtsman, Y. Avny, D. Davidov, Preparation, characterization, and application of au-shell/polystyrene beads and Au-Shell/magnetic beads. Adv. Mater. 13, 1253–1256 (2001). https://doi.org/10.1002/1521-4095(200108)13:16%3c1253:aid-adma1253%3e3.0.co;2-t

    Article  Google Scholar 

  5. W. Wu, C. Yu, M. Chu, A gold nanoshell with silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. Int. J. Nanomed. 6, 807–813 (2011). https://doi.org/10.2147/IJN.S16701

    Article  Google Scholar 

  6. I. Grabowska-Jadach, D. Kalinowska, M. Drozd, M. Pietrzak, Synthesis, characterization and application of plasmonic hollow gold nanoshells in a photothermal therapy New particles for theranostics. Biomed. Farmacother. 111, 1147–1155 (2019). https://doi.org/10.1016/j.biopha.2019.01.037

    Article  Google Scholar 

  7. K. Wang, Y. Wang, C. Wang, X. Jia, J. Li, R. Xiao, S. Wang, Facile synthesis of high-performance SiO2@Au core–shell nanoparticles with high SERS activity. RSC Adv. 8, 30825–30831 (2018). https://doi.org/10.1039/c8ra05213a

    Article  Google Scholar 

  8. D. Kandpal, S. Kalele, S. Kulkarni, Synthesis and characterization of silica–gold core-shell (SiO2@Au) nanoparticles. Pramana J. Phys. 69, 277–283 (2007). https://doi.org/10.1007/s12043-007-0128-z

    Article  ADS  Google Scholar 

  9. J. Choma, A. Dziura, D. Jamiola, P. Nyga, M. Jaroniec, Preparation and properties of silica-gold core-shell particles. Colloids Surf. A 373, 167–171 (2011). https://doi.org/10.1016/j.colsurfa.2010.10.046

    Article  Google Scholar 

  10. J.C.Y. Kah, N. Phonthammachai, R.C.Y. Wang, J. Song, T. White, S. Mhaisalkar, I. Ahmadb, C. Shepparda, M. Olivo, Synthesis of gold nanoshells based on the deposition-precipitation process. Gold Bull. 41, 23–36 (2008). https://doi.org/10.1007/BF03215620

    Article  Google Scholar 

  11. V.A. Khanadeev, B.N. Khlebtsov, N.G. Khlebtsov, Optical properties of gold nanoshells on monodisperse silica cores: experiment and simulations. J. Quant. Spectrosc. Radiat. Transf. 187, 1–9 (2017). https://doi.org/10.1016/j.jqsrt.2016.09.004

    Article  ADS  Google Scholar 

  12. M.D. English, E.R. Waclawik, A novel method for the synthesis of monodisperse gold-coated silica nanoparticles. J. Nanopart. Res. 14, 1–10 (2012). https://doi.org/10.1007/s11051-011-0650-2

    Article  Google Scholar 

  13. S. Soltaninejad, M.S. Husin, A.R. Sadrolhosseini, R. Zamiri, A. Zakaria, M.M. Moksin, E. Gharibshahi, Thermal diffusivity measurement of Au nanofluids of very low concentration by using photoflash technique. Measurements 46, 4321–4327 (2013). https://doi.org/10.1016/j.measurement.2013.07.043

    Article  Google Scholar 

  14. A. Netzahual-Lopantzi, J.F. Sánchez-Ramírez, J.L. Jiménez-Pérez, D. Cornejo-Monroy, G. López-Gamboa, Z.N. Correa-Pacheco, Study of the thermal diffusivity of nanofluids containing SiO2 decorated with Au nanoparticles by thermal lens spectroscopy. Appl. Phys. A 125, 588 (2019). https://doi.org/10.1007/s00339-019-2891-3

    Article  ADS  Google Scholar 

  15. J.L. Luna-Sánchez, J.L. Jiménez-Pérez, R. Carbajal-Valdez, G. López-Gamboa, M. Perez-Gonzalez, Z.N. Correa-Pacheco, Green synthesis of silver nanoparticles using Jalapeno Chili extract and thermal lens study of acrylic resin nanocomposites. Thermochim. Acta 678, 178314 (2019). https://doi.org/10.1016/j.tca.2019.178314

    Article  Google Scholar 

  16. J. Shen, R. Lowe, R.D. Snook, A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem. Phys. 165, 385–396 (1992). https://doi.org/10.1016/0301-0104(92)87053-C

    Article  Google Scholar 

  17. W. Stöber, A. Fink, Controlled Growth of monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5

    Article  ADS  Google Scholar 

  18. Q. Guo, D. Huang, X. Kou, W. Cao, L. Li, L. Ge, L. Jiangong, Synthesis of disperse amorphous SiO2 nanoparticles via sol-gel. Ceram. Int. 43, 92–196 (2017). https://doi.org/10.1016/j.ceramint.2016.09.133

    Article  Google Scholar 

  19. Y. An, G. Zhu, W. Bi, L. Lu, C. Feng, Z. Xu, W. Zhang, Highly sensitive electrochemical immunoassay integrated with polymeric nanocomposites and enhanced SiO2@Au core-shell nanobioprobes for SirT1 determination. Anal. Chim. Acta 966, 54–61 (2017). https://doi.org/10.1016/j.aca.2017.02.011

    Article  Google Scholar 

  20. L. Sun, L. Jiang, S. Peng, Y. Zheng, X. Sun, H. Su, C. Qi, Preparation of Au catalysis supported on core-shell SiO2/polypyrrole composites with high catalytic performances in the reduction of 4-nitrophenol. Synth. Met. 248, 20–26 (2019). https://doi.org/10.1016/j.synthmet.2018.12.024

    Article  Google Scholar 

  21. R. Zhang, Structural and optical properties of grey and porous SiO2 nanoparticles. Physica B 533, 23–25 (2019). https://doi.org/10.1016/j.physb.2018.10.027

    Article  ADS  Google Scholar 

  22. G. Xu, X. Shen, Fabrication of SiO2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance. Surf. Coat. Technol. 364, 180–186 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.069

    Article  Google Scholar 

  23. I.A. Rhaman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, M.A. Bakar, R.K.C. Adnan, An optimized sol-gel synthesis of stable primary equivalent silica particles. Colloids Surf. A 294, 102–110 (2007). https://doi.org/10.1016/j.colsurfa.2006.08.001

    Article  Google Scholar 

  24. E. Vega-López, U. Morales-Muñoz, El Proceso Stöber: Principios y Actualidad 1ª Parte 9, 19–30 (2016). http://quimica.ugto.mx/index.php/nyt/article/view/Nyt%209-3

  25. J.L. Jiménez-Pérez, J.F. Sánchez-Ramírez, D. Cornejo-Monroy, R. Gutiérrez-Fuentes, J.A. Pescador-Rojas, A. Cruz-Orea, C. Jacinto, Photothermal study of two different nanofluids containing SiO2 and TiO2 semiconductor nanoparticles. Int. J. Thermophys. 33, 69–79 (2012). https://doi.org/10.1007/s10765-011-1139-z

    Article  ADS  Google Scholar 

  26. E. Wondu, Z. Lule, J. Kim, Thermal Conductivity and Mechanical Properties of Thermoplastic Polyurethane-/Silane-Modified Al2O3 Composite Fabricated via Melt Compounding. Polymers 11, 1–12 (2019). https://doi.org/10.3390/polym11071103

    Article  Google Scholar 

  27. D.S. Muratov, D.V. Kuznetsov, I.A. Il’inykh, I.N. Burmistrov, I.N. Mazov, Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN. Compos. Sci. Technol. 111, 40–43 (2015). https://doi.org/10.1016/j.compscitech.2015.03.003

    Article  Google Scholar 

  28. S. Ivanova, V. Pitchon, C. Petit, H. Herschbach, A.V. Dorsselaer, E. Leize, Preparation of alumina supported gold catalysts: gold complexes genesis, identification and speciation by mass spectrometry. Appl. Catal. A 26, 203–210 (2006). https://doi.org/10.1016/j.apcata.2005.10.018

    Article  Google Scholar 

  29. M. Hari, S.A. Joseph, S. Mathew, B. Nithyaja, V.P.N. Nampoori, P. Radhakrishnan, Thermal diffusivity of nanofluids composed of rod-shaped silver nanoparticles. Int. J. Therm. Sci. 64, 188–194 (2013). https://doi.org/10.1016/j.ijthermalsci.2012.08.011

    Article  Google Scholar 

  30. R. Carbajal-Valdez, A. Rodríguez-Juárez, J.L. Jiménez-Pérez, J.F. Sánchez-Ramírez, A. Cruz-Orea, Z.N. Correa-Pacheco, M. Macías, J.L. Luna-Sánchez, Experimental investigation on thermal properties of Ag nanowire nanofluids at low concentrations. Thermochim. Acta 671, 83–88 (2019). https://doi.org/10.1016/j.tca.2018.11.015

    Article  Google Scholar 

  31. A. Netzahual-Lopantzi, J.F. Sánchez-Ramírez, J.L. Jiménez-Pérez, Comparative study of the thermal diffusivity of SiO2–Au nanoparticles in water base. Appl. Phys. A 126, 588 (2020). https://doi.org/10.1007/s00339-020-3346-6

    Article  Google Scholar 

  32. X. Huang, M.A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1, 13–28 (2010). https://doi.org/10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  33. W. Huang, Q. Qian, M.A. El-Sayed, Y. Ding, Z.L. Wang, Effect of the lattice crystallinity on the electron-phonon relaxation rates in gold nanoparticles. J. Phys. Chem. C 111, 10751–10757 (2007). https://doi.org/10.1021/jp0738917

    Article  Google Scholar 

  34. F.M. Ali, W.M. Yunus, Study of the effect of volume fraction concentration and particle materials on thermal conductivity and thermal diffusivity of nanofluids. Jpn. J. Appl. Phys. 50, 085201 (2011). https://doi.org/10.1143/JJAP.50.085201

    Article  ADS  Google Scholar 

  35. R. Gutierrez Fuentes, J.A. Pescador Rojas, J.L. Jimenez-Perez, J.L. Sánchez-Ramírez, A. Cruz-Orea, J.G. Mendoza-Alvarez, Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure. Appl. Surf. Sci. 255, 781–783 (2008). https://doi.org/10.1016/j.apsusc.2008.07.023

    Article  ADS  Google Scholar 

  36. M. Nikbankht, Radiative heat transfer between core-shell nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 221, 164–171 (2018). https://doi.org/10.1016/j.jqsrt.2018.10.005

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT (Mexico) under scholarship No. 308327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Netzahual-Lopantzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Netzahual-Lopantzi, A., Sánchez-Ramírez, J.F., Saab-Rincón, G. et al. Thermal diffusivity monitoring during the stages of formation of core–shell structures of SiO2@Au. Appl. Phys. A 126, 392 (2020). https://doi.org/10.1007/s00339-020-03586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03586-3

Keywords

Navigation