Skip to main content
Log in

Comparative study of the thermal diffusivity of SiO2–Au nanoparticles in water base

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two SiO2–Au nanoparticles were prepared. Silicon dioxide (SiO2) structures with average size of 143 and 90 nm were synthesized using the sol–gel method. Gold (Au) nanoparticles of ~ 5 nm were deposited using the deposition–precipitation process on each dielectric platform. The concentration of silanol groups of SiO2 spheres was obtained. The size and form of SiO2, Au and SiO2–Au nanoparticles were evaluated by transmission electron microscopy (TEM). The TEM micrographs confirmed the size and spherical form for SiO2 and Au nanoparticles with high monodispersity, the decoration of SiO2 spheres with metallic nanoparticles was also confirmed. The reflectance spectrum revealed a decreased of reflectivity around 516 nm for SiO2–Au structures, the decrease of reflectance was associated with the presence of gold nanoparticles on dielectric spheres. The SiO2–Au structures (at different mass 0.1–0.6 mg/ml) were dispersed in deionized water. Thermal diffusivity of SiO2–Au particles in water was studied using the thermal lens (TL) spectroscopy. The results revealed an increase in thermal diffusivity as the SiO2–Au concentration was increased. The thermal property was independent on the size of the SiO2 spheres used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Stöber, A. Fink, Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1), 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5

    Article  ADS  Google Scholar 

  2. C. Kuang-Hsiu, P. Ying-Chih Pu, C. Kao-Der, L. Yi-Fan, L. Chia-Ming, Y. Jien-Wei, S. Han-C, H. Yung-Jung, Ag-Nanoparticle-decorated SiO2 nanospheres exhibiting remarkable plasmon-mediated photocatalytic properties. J Phys Chem C 116(35), 19039–19045 (2012). https://doi.org/10.1021/jp306555j

    Article  Google Scholar 

  3. M. Nur-Kamilah, W. Mohd Afiq, W. Mohd Khalik, A. A. Azmi, Synthesis and characterization of silicasilver coreshell nanoparticles. Malays Anal Sci Soc 43(2), 290–299 (2009). https://doi.org/10.17576/mjas-2019-2302-13

    Article  Google Scholar 

  4. G. Zhong-Ze, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, O. Sato, Fabrication of a metal‐coated three‐dimensionally ordered macroporous film and its application as a refractive index sensor. Angew Chem 41(7), 1153–1156 (2002). https://doi.org/10.1002/1521-3757(20020402)114:7%3c1201:AID-ANGE1201%3e3.0.CO;2-0

    Article  Google Scholar 

  5. A. Convertino, M. Cuscunà, F. Martelli, M. Manera, R. Rella, Silica nanowires decorated with metal nanoparticles for refractive index sensors: three-dimensional metal arrays and light trapping at plasmonic resonances. J Phys Chem 118(1), 685–690 (2014). https://doi.org/10.1021/jp411743p

    Article  Google Scholar 

  6. F. Ruffino, M.G. Grimaldi, Au nanoparticles decorated SiO2 nanowires by dewetting on curved surfaces: facile synthesis and nanoparticles–nanowires sizes correlation. J Nanopart Res 15, 1–17 (2013). https://doi.org/10.1007/s11051-013-1909-6

    Article  Google Scholar 

  7. A.B. Phantagare, S.D. Dhole, S.S. Dahiwale, V.N. Bhoraskar, Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres. Appl Surf Sci 441, 744–753 (2018). https://doi.org/10.1016/j.apsusc.2018.02.057

    Article  ADS  Google Scholar 

  8. J.C.Y. Kah, N. Phonthammachai, R.C.Y. Wang, J. Song, T. White, S. Mhaisalkar, I. Ahmadb, C. Shepparda, M. Olivo, Synthesis of gold nanoshells based on the deposition–precipitation process. Gold Bull 41(1), 23–36 (2008). https://doi.org/10.1007/BF03215620

    Article  Google Scholar 

  9. L. Wang, T. Cheang, S. Wang, Z. Hu, Z. Xing, W. Qu, A. Xu, Monodisperse Au/aminosilica composite nanospheres: facile one-step synthesis and their applications in gene transfection. J Mater Res 27(18), 2425–2430 (2012). https://doi.org/10.1557/jmr.2012.218

    Article  ADS  Google Scholar 

  10. A. Colombelli, M.G. Manera, A. Taurino, M. Catalano, A. Convertino, R. Rella, Au nanoparticles decoration of silica nanowires for improved optical bio-sensing. Sens Actuators B Chem 226, 589–597 (2016). https://doi.org/10.1016/j.snb.2015.11.075

    Article  Google Scholar 

  11. I. Kim, E. Joachim, H. Choi, K. Kim, Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomed Nanotechnol Biol Med 11(6), 1407–1416 (2015). https://doi.org/10.1016/j.nano.2015.03.004

    Article  Google Scholar 

  12. I.H. El-Sayed, X. Huang, M.A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5), 829–834 (2005). https://doi.org/10.1021/nl050074e

    Article  ADS  Google Scholar 

  13. A. Orlando, M. Colombo, D. Prosperi, F. Corsi, A. Panariti, I. Rivolta, M. Masserini, E. Cazzaniga, Evaluation of gold nanoparticles biocompatibility: a multiparametric study on cultured endothelial cells and macrophages. J Nanopart Res 18(3), 58 (2016). https://doi.org/10.1007/s11051-016-3359-4

    Article  Google Scholar 

  14. P. García-Calavia, G. Bruce, L. Pérez-García, D.A. Russel, Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem Photobiol Sci 17, 1534–1552 (2018). https://doi.org/10.1039/C8PP00271A

    Article  Google Scholar 

  15. M. Khosroshahi, M.S. Nourbakhsh, In vitro skin wound soldering using SiO2/Au nanoshells and a diode laser. Med Laser Appl 26(1), 35–42 (2011). https://doi.org/10.1016/j.mla.2010.06.001

    Article  Google Scholar 

  16. A.H. Abdelrazek, O.A. Alawi, S.N. Kazi, N. Yusoff, Z. Chowdhury, A.D. Sarhan, A new approach to evaluate the impact of thermophysical properties of nanofluids on heat transfer and pressure drop. Int Commun Heat Mass Transfer 95, 161–170 (2018). https://doi.org/10.1016/j.icheatmasstransfer.2018.05.002

    Article  Google Scholar 

  17. E. Shahriarr, Y.W.M. Mat, R. Zamiri, The effect of nanoparticle size on thermal diffusivity of gold nano-fluid measured using thermal lens technique. J Euro Opt Soc Rapid Publ 8, 13026 (2013). https://doi.org/10.2971/jeos.2013.13026

    Article  Google Scholar 

  18. A. Netzahual-Lopantzi, J.F. Sánchez-Ramírez, J.L. Jiménez-Pérez, D. Cornejo-Monroy, G. López-Gamboa, Z.N. Correa-Pacheco, Study of the thermal diffusivity of nanofluids containing SiO2 decorated with Au nanoparticles by thermal lens spectroscopy. Appl Phys A 125, 588 (2019). https://doi.org/10.1007/s00339-019-2891-3

    Article  ADS  Google Scholar 

  19. S. Yuaga, M. Okabayashi, H. Ohno, K. Suzuki, K. Kusumoto, U.S. Patent 4, 764,497, 1988

  20. J.L. Jiménez-Pérez, J.F. Sánchez-Ramírez, D. Cornejo-Monroy, R. Gutiérrez-Fuentes, J.A. Pescador-Rojas, A. Cruz-Orea, C. Jacinto, Photothermal study of two different nanofluids containing SiO2 and TiO2 semiconductor nanoparticles. Int J Thermophys 33(1), 69–79 (2012). https://doi.org/10.1007/s10765-011-1139-z

    Article  ADS  Google Scholar 

  21. R. Carbajal-Valdez, J.L. Jiménez-Pérez, A. Cruz-Orea, Z.N. Correa-Pacheco, M. Alvarado-Noguez, I.C. Romero-Ibarra, J.G. Mendoza-Álvarez, Thermal properties of centrifuged oils measured by alternative photothermal techniques. Thermochim Acta 657, 66–71 (2017). https://doi.org/10.1016/j.tca.2017.09.014

    Article  Google Scholar 

  22. J. Shen, R. Lowe, R.D. Snook, A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem Phys 165(1–3), 385–396 (1992). https://doi.org/10.1016/0301-0104(92)87053-C

    Article  Google Scholar 

  23. T. Matsoukas, E. Gulari, Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. J Colloid and Interface Sci 124(1), 252–261 (1988). https://doi.org/10.1016/0021-9797(88)90346-3

    Article  ADS  Google Scholar 

  24. D. Cornejo-Monroy, J.A. Pescador-Rojas, J.F. Sánchez-Ramírez, J.L. Herrera-Pérez, Nanoesferas monodispersas de SiO2: síntesis controlada y caracterización. Revista Superficies y Vacio 22(3), 44–48 (2009)

    Google Scholar 

  25. H. Nabeshi, T. Yoshikawa, K. Matsuyama, Y. Nakazato, S. Tochigi, S. Kondoh, T. Hirai, T. Akase, K. Nagano, Y. Abe, Y. Yoshioka, H. Kamada, N. Itoh, S. Thunoda, Y. Tsutsumi, Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part Fibre Toxicol 8(1), 1–10 (2011). https://doi.org/10.1186/1743-8977-8-1

    Article  Google Scholar 

  26. S. Wang, D.K. Wang, S. Smart, J. Diniz da Costa, Ternary phase-separation investigation of sol-gel derived silica from ethyl silicate 40. Sci Rep 5, 1–11 (2015). https://doi.org/10.1038/srep14560

    Article  Google Scholar 

  27. J.L. Montaño-Priede, J.P. Coelho, A. Guerrero-Martínez, O. Peña-Rodríguez, U. Pal, Fabrication of monodisperse Au@SiO2 nanoparticles with highly stable silica layers by ultrasound-assisted Stöber method. J Phys Chem C 121(17), 9543–9551 (2017). https://doi.org/10.1021/acs.jpcc.7b00933

    Article  Google Scholar 

  28. I.A. Rhaman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, A. Bakar, R. Adnan, C.K. Chee, An optimized sol-gel synthesis of stable primary equivalent silica particles. Colloids Surf A 294, 102–110 (2007). https://doi.org/10.1016/j.colsurfa.2006.08.001

    Article  Google Scholar 

  29. V. Lenart, N. Astrath, R. Turchiello, G. Goya, S. Gómez, Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique. J Appl Phys 123(8), 1–4 (2018). https://doi.org/10.1063/1.5017025

    Article  Google Scholar 

  30. G.A. López-Muñoz, J.A. Balderas-López, J. Ortega-López, J.A. Pescador-Rojas, J. Santoyo-Salazar, Thermal diffusivity measurement for urchin-like gold nanofluids with different solvents, sizes and concentrations/shapes. Nanoscale Res Lett 7(667), 1–7 (2012). https://doi.org/10.1186/1556-276X-7-667

    Article  Google Scholar 

  31. I.A. Rhaman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, C.K. Chee, Size-dependent physicochemical and optical properties of silica nanoparticles. Mater Chem Phys 114, 328–332 (2009). https://doi.org/10.1016/j.matchemphys.2008.09.068

    Article  Google Scholar 

  32. D.H. Kumar, H.E. Patel, V.R.R. Umar, T. Sundararajan, T. Pradeep, S. Das, Model for heat conduction in nanofluids. Phys Rev Lett 93(14), 1–4 (2004)

    Article  Google Scholar 

  33. Z. Zheng, L. Qiu, G. Su, D. Tang, Y. Liao, C. Yunfa, Thermal conductivity and thermal diffusivity of SiO2 nanopowder. J Nanopart Res 13(12), 6887–6893 (2011). https://doi.org/10.1007/s11051-011-0596-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Netzahual Lopantzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Netzahual Lopantzi, A., Sánchez Ramírez, J.F. & Jiménez Pérez, J.L. Comparative study of the thermal diffusivity of SiO2–Au nanoparticles in water base . Appl. Phys. A 126, 172 (2020). https://doi.org/10.1007/s00339-020-3346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3346-6

Keywords

Navigation