Skip to main content
Log in

Silver nanoparticle-decorated silver nanowires: a nanocomposite via green synthesis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study reports an ecological approach for the synthesis of silver nanowires (AgNW) decorated with silver nanoparticles (AgNP) using Mangifera indica leaf extract. A composite material of AgNW with a length of more than 10 μm and a diameter of ~ 70 nm was obtained, surrounded by AgNP with sizes less than 10 nm. The material obtained was characterized using UV–Vis spectroscopy, transmission electron microscopy, X-ray energy dispersive spectrometry and Fourier transform infrared spectroscopy. The crystallinity of the nanoparticles was analyzed with high-resolution HRTEM images and with the SAED diffraction pattern, identifying crystalline planes (111), (200), (220), (311) and (222) corresponding to silver. Additionally, in the theoretical study, the adsorption energy (Eads) was analyzed from the interaction of the Ag2 clusters close to cross-sections of different sizes of AgNW in the presence of the glycine molecule. This analysis was made using the theories of Hartree Fock and DFT. On the other hand, the material obtained showed excellent antibacterial activity against the bacterium Escherichia coli, inhibiting the growth of the microorganism by 99.95%. According to our knowledge, this would be the first report where this type of nanocomposite is obtained through green synthesis, in the same colloidal medium, without the need to apply different methodologies to obtain any of the individual nanostructures mentioned separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T.J.I. Edison, M.G. Sethuraman, Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47, 1351–1357 (2012). https://doi.org/10.1016/J.PROCBIO.2012.04.025

    Article  Google Scholar 

  2. X. Tian, X. Jiang, C. Welch, T.R. Croley, T.-Y. Wong, C. Chen, S. Fan, Y. Chong, R. Li, C. Ge, C. Chen, J.-J. Yin, Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism. ACS Appl. Mater. Interfaces 10, 8443–8450 (2018). https://doi.org/10.1021/acsami.7b17274

    Article  Google Scholar 

  3. A. Abaza, E.A. Hegazy, G.A. Mahmoud, B. Elsheikh, Characterization and antitumor activity of chitosan/poly (vinyl alcohol) blend doped with gold and silver nanoparticles in treatment of prostatic cancer model. J. Pharm. Pharmacol. 6, 659–673 (2018). https://doi.org/10.17265/2328-2150/2018.07.003

    Article  Google Scholar 

  4. K. Xu, J. Wu, C.F. Tan, G.W. Ho, A. Wei, M. Hong, Ag–CuO–ZnO metal–semiconductor multiconcentric nanotubes for achieving superior and perdurable photodegradation. Nanoscale 9, 11574 (2017)

    Article  Google Scholar 

  5. F. Xu, Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122 (2012). https://doi.org/10.1002/adma.201201886

    Article  Google Scholar 

  6. K. Xu, R. Zhou, K. Takei, M. Hong, Toward flexible surface-enhanced raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 6(16), 1900925–1900947 (2019)

    Article  Google Scholar 

  7. R. Lei, H. Ni, R. Chen, H. Gu, B. Zhang, W. Zhan, Ag nanowire-modified 1D α-Fe2O3 nanotube arrays for photocatalytic degradation of methylene blue. J. Nanoparticle Res. 19(11), 378 (2017)

    Article  ADS  Google Scholar 

  8. K. Xu, Y. Lu, K. Takei, Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 4, 1800628 (2019)

    Article  Google Scholar 

  9. K. Xu, Z. Wang, C.F. Tan, N. Kang, L. Chen, L. Ren, M. Hong, Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl. Mater. Interfaces 9(31), 26341–26349 (2017)

    Article  Google Scholar 

  10. K. Xu, H. Yan, C.F. Tan, Y. Lu, Y. Li, G.W. Ho, M. Hong, Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible-light-driven recyclable surface enhanced Raman scattering. Adv. Opt. Mater. 6(7), 1701167 (2018)

    Article  Google Scholar 

  11. M.M. Menamparambath, C. Muhammed Ajmal, K.H. Kim, D. Yang, J. Roh, H.C. Park, C. Kwak, J.-Y. Choi, S. Baik, Silver nanowires decorated with silver nanoparticles for low-haze flexible transparent conductive films. Sci. Rep. 5, 16371 (2015). https://doi.org/10.1038/srep16371

    Article  ADS  Google Scholar 

  12. S.J. Lee, J.M. Baik, M. Moskovits, Polarization-dependent surface-enhanced Raman scattering from a silver-nanoparticle-decorated single silver nanowire. Nano Lett. 8(10), 3244–3247 (2008)

    Article  ADS  Google Scholar 

  13. M.L. Tran, S.P. Centeno, J.A. Hutchison, H. Engelkamp, D. Liang, G. Van Tendeloo, H. Uji-i, Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires. J. Am. Chem. Soc. 130(51), 17240–17241 (2008)

    Article  Google Scholar 

  14. L.M. Chen, Y.N. Liu, Ag-nanoparticle-modified single Ag nanowire for detection of melamine by surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 43(8), 986–991 (2012)

    Article  ADS  Google Scholar 

  15. R.D. Holtz, A.G. Souza Filho, M. Brocchi, D. Martins, N. Durán, O.L. Alves, Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21(18), 185102 (2010)

    Article  ADS  Google Scholar 

  16. H. Lu, D. Zhang, X. Ren, J. Liu, W.C. Choy, Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode. ACS Nano 8(10), 10980–10987 (2014)

    Article  Google Scholar 

  17. E.A. González, N. Leiva, N. Vejar, M. Sancy, M. Gulppi, M.I. Azócar, G. Gomez, L. Tamayo, X. Zhou, G.E. Thompson, M.A. Páez, Sol–gel coatings doped with encapsulated silver nanoparticles: inhibition of biocorrosion on 2024-T3 aluminum alloy promoted by Pseudomonas aeruginosa. J. Mater. Res. Technol. (2019). https://doi.org/10.1016/J.JMRT.2018.12.011

    Article  Google Scholar 

  18. K. Xu, C. Zhang, R. Zhou, R. Ji, M. Hong, Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. Opt. Express 24, 10352–10358 (2016)

    Article  ADS  Google Scholar 

  19. J.N. Solanki, Z.V.P. Murthy, Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review. Ind. Eng. Chem. Res. (2011). https://doi.org/10.1021/ie201649x

    Article  Google Scholar 

  20. H. Yin, T. Yamamoto, Y. Wada, S. Yanagida, Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater. Chem. Phys. (2004). https://doi.org/10.1016/j.matchemphys.2003.09.006

    Article  Google Scholar 

  21. J. Yang, J. Pan, Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Mater. (2012). https://doi.org/10.1016/j.actamat.2012.05.037

    Article  Google Scholar 

  22. C. Dhand, N. Dwivedi, X.J. Loh, A.N. Jie Ying, N.K. Verma, R.W. Beuerman, R. Lakshminarayanan, S. Ramakrishna, Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. (2015). https://doi.org/10.1039/c5ra19388e

    Article  Google Scholar 

  23. I. Hussain, N.B. Singh, A. Singh, H. Singh, S.C. Singh, Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. (2016). https://doi.org/10.1007/s10529-015-2026-7

    Article  Google Scholar 

  24. S. Ahmed, M. Saifullah, B.L. Ahmad, S.I. Swami, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. (2016). https://doi.org/10.1016/j.jrras.2015.06.006

    Article  Google Scholar 

  25. M. Meena Kumari, J. Jacob, D. Philip, Green synthesis and applications of Au–Ag bimetallic nanoparticles. Acta Part A Mol. Biomol. Spectrosc. Spectrochim. (2015). https://doi.org/10.1016/j.saa.2014.08.079

    Article  Google Scholar 

  26. M.N. Nadagouda, T.F. Speth, R.S. Varma, Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res. (2011). https://doi.org/10.1021/ar1001457

    Article  Google Scholar 

  27. T.C. Prathna, N. Chandrasekaran, A.M. Raichur, A. Mukherjee, Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surf. A Physicochem. Eng. Asp. (2011). https://doi.org/10.1016/j.colsurfa.2010.12.047

    Article  Google Scholar 

  28. J.I. Hussain, S. Kumar, A.A. Hashmi, Z. Khan, Silver nanoparticles: preparation, characterization, and kinetics. Adv. Mater. Lett. (2011). https://doi.org/10.5185/amlett.2011.1206

    Article  Google Scholar 

  29. M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy, G.E.J. Poinern, Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) (2015). https://doi.org/10.3390/ma8115377

    Article  Google Scholar 

  30. D. Philip, Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 78, 327–331 (2011). https://doi.org/10.1016/J.SAA.2010.10.015

    Article  ADS  Google Scholar 

  31. D. Philip, Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 77, 807–810 (2010). https://doi.org/10.1016/J.SAA.2010.08.008

    Article  ADS  Google Scholar 

  32. M.H.A. Jahurul, I.S.M. Zaidul, K. Ghafoor, F.Y. Al-Juhaimi, K.-L. Nyam, N.A.N. Norulaini, F. Sahena, A.K. Mohd Omar, Mango (Mangifera indica L.) by-products and their valuable components: a review. Food Chem. 183, 173–180 (2015)

    Article  Google Scholar 

  33. C.P. Devatha, A.K. Thalla, S.Y. Katte, Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean. Prod. 139, 1425–1435 (2016)

    Article  Google Scholar 

  34. G. Rajakumar, A.A. Rahuman, S.M. Roopan, I.-M. Chung, K. Anbarasan, V. Karthikeyan, Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitol. Res. 114, 571–581 (2015)

    Article  Google Scholar 

  35. N. Yang, W.-H. Li, Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind. Crops Prod. 48, 81–88 (2013)

    Article  Google Scholar 

  36. N. Yang, L. WeiHong, L. Hao, Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater. Lett. 134, 67–70 (2014)

    Article  Google Scholar 

  37. P. Horta-Fraijo, M. Cortez-Valadez, N.S. Flores-Lopez, R. Britto Hurtado, R.A. Vargas-Ortiz, A. Perez-Rodriguez, M. Flores-Acosta, Ultra-small Ag clusters in zeolite A4: antibacterial and thermochromic applications. Phys. E Low Dimens. Syst. Nanostructures 97, 111–119 (2018)

    Article  ADS  Google Scholar 

  38. Y. Cai, X. Piao, W. Gao, Z. Zhang, E. Nie, Z. Sun, Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Adv. 7, 34041–34048 (2017)

    Article  Google Scholar 

  39. S.H. Kim, B.S. Choi, K. Kang, Y.S. Choi, S.I. Yang, Low temperature synthesis and growth mechanism of Ag nanowires. J. Alloys Compd. 433, 261–264 (2007)

    Article  Google Scholar 

  40. S.S. Shankar, A. Ahmad, M. Sastry, Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. (2003). https://doi.org/10.1021/bp034070w

    Article  Google Scholar 

  41. M. Sathishkumar, K. Sneha, S.W. Won, C.W. Cho, S. Kim, Y.S. Yun, Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces (2009). https://doi.org/10.1016/j.colsurfb.2009.06.005

    Article  Google Scholar 

  42. N.M. Ramírez, L.M. Farias, F.A. Santana, J.P.V. Leite, M.I. De Souza Dantas, R.C.L. Toledo, J.H. De Queiroz, H.S.D. Martino, S.M.R. Ribeiro, Extraction of mangiferin and chemical characterization and sensorial analysis of teas from Mangifera indica L. leaves of the Ubá variety. Beverages 2, 33 (2016). https://doi.org/10.3390/beverages2040033

    Article  Google Scholar 

  43. I. Rodeiro, M.T. Donato, N. Jiménez, G. Garrido, R. Delgado, M.J. Gómez-Lechón, Effects of Mangifera indica L aqueous extract (Vimang) on primary culture of rat hepatocytes. Food Chem. Toxicol. 45, 2506–2512 (2007)

    Article  Google Scholar 

  44. G. Cakmak, I. Togan, F. Severcan, 17β-Estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy: a comparative study with nonylphenol. Aquat. Toxicol. 77, 53–63 (2006)

    Article  Google Scholar 

  45. I. Poljanšek, M. Krajnc, Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chim. Slov. 52, 238 (2005)

    Google Scholar 

  46. A.K. Mittal, S. Kumar, U.C. Banerjee, Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci. 431, 194–199 (2014)

    Article  ADS  Google Scholar 

  47. E. Filippo, A. Serra, A. Buccolieri, D. Manno, Green synthesis of silver nanoparticles with sucrose and maltose: morphological and structural characterization. J. Non. Cryst. Solids 356, 344–350 (2010)

    Article  ADS  Google Scholar 

  48. Y. Sun, Conversion of Ag nanowires to AgCl nanowires decorated with au nanoparticles and their photocatalytic activity. J. Phys. Chem. C 114, 2127–2133 (2010). https://doi.org/10.1021/jp9115645

    Article  Google Scholar 

  49. H. Chen, L. Wang, J. Li, Y. Yu, X. Bi, Gold nanoparticles decorated silver-nanowire films for transparent electrode with excellent thermal stability. Mater. Lett. 217, 52–55 (2018)

    Article  Google Scholar 

  50. H.-J. Xie, Q.-F. Lei, W.-J. Fang, Intermolecular interactions between gold clusters and selected amino acids cysteine and glycine: a DFT study. J. Mol. Model. 18, 645–652 (2012)

    Article  Google Scholar 

  51. L. Miao, J.M. Seminario, Molecular dynamics simulations of the vibrational signature transfer from a glycine peptide chain to nanosized gold clusters. J. Phys. Chem. 111, 8366–8371 (2007). https://doi.org/10.1021/jp068797p

    Article  Google Scholar 

  52. A. Parameswari, A.M.F. Benial. Orientation of glycine on silver nanoparticles: SERS studies. In: AIP Conference Proceedings (AIP Publishing LLC, 2016), p. 020374. https://doi.org/10.1063/1.4946425

  53. A.H. Pakiari, Z. Jamshidi, Interaction of amino acids with gold and silver clusters. J. Phys. Chem. (2007). https://doi.org/10.1021/JP070306T

    Article  Google Scholar 

  54. A. Parameswari, S. Premkumar, R. Premkumar, A.M. Franklin Benial, Surface enhanced Raman spectroscopy and quantum chemical studies on glycine single crystal. J. Mol. Struct. 1116, 180–187 (2016)

    Article  ADS  Google Scholar 

  55. M.K. Rai, S.D. Deshmukh, A.P. Ingle, A.K. Gade, Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. (2012). https://doi.org/10.1111/j.1365-2672.2012.05253.x

    Article  Google Scholar 

  56. S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007)

    Article  Google Scholar 

  57. W.-R. Li, X.-B. Xie, Q.-S. Shi, H.-Y. Zeng, Y.-S. Ou-Yang, Y.-B. Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85, 1115–1122 (2010)

    Article  Google Scholar 

  58. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18, 225103 (2007)

    Article  ADS  Google Scholar 

  59. X. Hong, J. Wen, X. Xiong, Y. Hu, Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ. Sci. Pollut. Res. 23, 4489–4497 (2016)

    Article  Google Scholar 

  60. L. Liu, C. He, J. Li, J. Guo, D. Yang, J. Wei, Green synthesis of silver nanowires via ultraviolet irradiation catalyzed by phosphomolybdic acid and their antibacterial properties. New J. Chem. 37, 2179 (2013)

    Article  Google Scholar 

  61. C. Tang, W. Sun, J. Lu, W. Yan, Role of the anions in the hydrothermally formed silver nanowires and their antibacterial property. J. Colloid Interface Sci. 416, 86–94 (2014). https://doi.org/10.1016/J.JCIS.2013.10.036

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The computational resources for this investigation was facilitated by UNISON/Acarus. Special thanks to the support given by Laboratory of Transmission Electron Microscopy in University of Sonora. The author M. Cortez-Valadez appreciates the support provided by the "Cátedras CONACYT" program. This research was developed thanks to the support provided through the A1-S-46242 CONACYT project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Britto Hurtado or M. Cortez-Valadez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horta-Piñeres, S., Britto Hurtado, R., Avila-Padilla, D. et al. Silver nanoparticle-decorated silver nanowires: a nanocomposite via green synthesis. Appl. Phys. A 126, 15 (2020). https://doi.org/10.1007/s00339-019-3178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3178-4

Navigation