Skip to main content
Log in

Analytical modeling of lack-of-fusion porosity in metal additive manufacturing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work presents a physics-based analytical modeling methodology for the prediction of the lack-of-fusion porosity in powder bed metal additive manufacturing (PBMAM) considering the molten pool geometry, powder size variation, and packing. The presented model has promising short computational time without resorting to the finite element method or any iteration-based simulations. The temperature profiles were calculated using a closed-form temperature solution. Multiple transverse sectional areas of the molten pool geometry were plotted on a cross-sectional area of the part based on hatch space and layer thickness to calculate the lack-of-fusion area. The powder bed porosity was calculated using advancing front approach with consideration of powder statistical distribution and powder packing. The part porosity was converted from the calculated lack-of-fusion area by multiplying the calculated powder bed porosity. Acceptable agreements were observed upon validation against experimental measurements under various process conditions in PBMAM of Ti6Al4V. The computational time was recorded less than 26 s for the porosity calculation of five consecutive layers. The presented model has high prediction accuracy and high computational efficiency, which allow the porosity calculation for large-scale parts and process parameters planning through inverse analysis, and thus improves the usefulness of analytical modeling in real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source and boundary heat loss from convection and radiation, respectively. P, V denote laser powder and scan velocity. W, L, D denote molten pool width, length, and depth

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.S. Thomas, S.W. Gilbert, Costs and cost effectiveness of additive manufacturing. NIST Spec. Publ. 1176, 12 (2014). https://doi.org/10.6028/NIST.SP.1176

    Article  Google Scholar 

  2. J.J. Lewandowski, M. Seifi, Metal additive manufacturing: a review of mechanical properties. Annu. Rev. Mater. Res. 46, 151–186 (2016). https://doi.org/10.1146/annurev-matsci-070115-032024

    Article  ADS  Google Scholar 

  3. B. Van Hooreweder, Y. Apers, K. Lietaert, J.P. Kruth, Improving the fatigue performance of porous metallic biomaterials produced by selective laser melting. Acta Biomater. 47, 193–202 (2017). https://doi.org/10.1016/j.actbio.2016.10.005

    Article  Google Scholar 

  4. R. Wauthle, J. Van Der Stok, S.A. Yavari, J. Van Humbeeck, J.P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants. Acta Biomater. 14, 217–225 (2015). https://doi.org/10.1016/j.actbio.2014.12.003

    Article  Google Scholar 

  5. H. Yi, L. Qi, J. Luo, D. Zhang, N. Li, Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores. J. Mater. Process. Technol. 264, 145–154 (2019). https://doi.org/10.1016/j.jmatprotec.2018.09.004

    Article  Google Scholar 

  6. H. Yi, L. Qi, J. Luo, D. Zhang, H. Li, X. Hou, Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets. Int. J. Mach. Tools Manuf. 130, 1–11 (2018). https://doi.org/10.1016/j.ijmachtools.2018.03.006

    Article  Google Scholar 

  7. H. Yi, L. Qi, J. Luo, N. Li, Hole-defects in soluble core assisted aluminum droplet printing: Metallurgical mechanisms and elimination methods. Appl. Therm. Eng. 148, 1183–1193 (2019). https://doi.org/10.1016/j.applthermaleng.2018.12.013

    Article  Google Scholar 

  8. H. Yi, L.H. Qi, J. Luo, Y. Jiang, W. Deng, Pinhole formation from liquid metal microdroplets impact on solid surfaces. Appl. Phys. Lett. 108(4), 041601 (2016). https://doi.org/10.1063/1.4940404

    Article  ADS  Google Scholar 

  9. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1, 77–86 (2014). https://doi.org/10.1016/j.addma.2014.08.001

    Article  Google Scholar 

  10. R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process. Int. J. Adv. Manuf. Technol. 59(9–12), 1025–1035 (2012). https://doi.org/10.1007/s00170-011-3566-1

    Article  Google Scholar 

  11. G. Vastola, Q.X. Pei, Y.W. Zhang, Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime. Addit. Manuf. 22, 817–822 (2018). https://doi.org/10.1016/j.addma.2018.05.042

    Article  Google Scholar 

  12. C. Teng, H. Gong, A. Szabo, J.J.S. Dilip, K. Ashby, S. Zhang, N. Patil, D. Pal, B. Stucker, Simulating melt pool shape and lack of fusion porosity for selective laser melting of cobalt chromium components. J. Manuf. Sci. Eng. 139(1), 011009 (2017). https://doi.org/10.1115/1.4034137

    Article  Google Scholar 

  13. G. Kasperovich, J. Haubrich, J. Gussone, G. Requena, Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater. Des. 105, 160–170 (2016). https://doi.org/10.1016/j.matdes.2016.05.070

    Article  Google Scholar 

  14. J.A. Slotwinski, E.J. Garboczi, K.M. Hebenstreit, Porosity measurements and analysis for metal additive manufacturing process control. J. Res. Nat. Inst. Stand. Technol. 119, 494 (2014). https://doi.org/10.6028/jres.119.019

    Article  Google Scholar 

  15. A.B. Spierings, M. Schneider, R. Eggenberger, Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyp. J. 17(5), 380–386 (2011). https://doi.org/10.1108/13552541111156504

    Article  Google Scholar 

  16. C. Bruna-Rosso, A.G. Demir, B. Previtali, Selective laser melting finite element modeling: validation with high-speed imaging and lack of fusion defects prediction. Mater. Des. 156, 143–153 (2018). https://doi.org/10.1016/j.matdes.2018.06.037

    Article  Google Scholar 

  17. T. Mukherjee, T. DebRoy, Mitigation of lack of fusion defects in powder bed fusion additive manufacturing. J. Manuf. Process. 36, 442–449 (2018). https://doi.org/10.1016/j.jmapro.2018.10.028

    Article  Google Scholar 

  18. P. Wei, Z. Wei, Z. Chen, Y. He, J. Du, Thermal behavior in single track during selective laser melting of AlSi10Mg powder. Appl. Phys. A 123(9), 604 (2017). https://doi.org/10.1007/s00339-017-1194-9

    Article  ADS  Google Scholar 

  19. Z. Chen, Y. Xiang, Z. Wei, P. Wei, B. Lu, L. Zhang, J. Du, Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification. Appl. Phys. A 124(4), 313 (2018). https://doi.org/10.1007/s00339-018-1737-8

    Article  ADS  Google Scholar 

  20. C. Körner, E. Attar, P. Heinl, Mesoscopic simulation of selective beam melting processes. J Mater. Process. Technol. 211(6), 978–987 (2011). https://doi.org/10.1016/j.jmatprotec.2010.12.016

    Article  Google Scholar 

  21. Y. Xiang, S. Zhang, Z. Wei, J. Li, P. Wei, Z. Chen, L. Yang, L. Jiang, Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V. Appl. Phys. A 124(10), 685 (2018). https://doi.org/10.1007/s00339-018-2056-9

    Article  ADS  Google Scholar 

  22. J.L. Tan, C. Tang, C.H. Wong, A computational study on porosity evolution in parts produced by selective laser melting. Metall. Mater. Trans. A 49(8), 3663–3673 (2018). https://doi.org/10.1007/s11661-018-4697-x

    Article  Google Scholar 

  23. M. Bayat, S. Mohanty, J.H. Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. Int. J. Heat Mass Transf. 139, 95–114 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.003

    Article  Google Scholar 

  24. A. AlFaify, J. Hughes, K. Ridgway, Controlling the porosity of 316L stainless steel parts manufactured via the powder bed fusion process. Rapid Prototyp. J. 25(1), 162–175 (2019). https://doi.org/10.1108/RPJ-11-2017-0226

    Article  Google Scholar 

  25. G. Tapia, A.H. Elwany, H. Sang, Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit. Manuf. 12, 282–290 (2016). https://doi.org/10.1016/j.addma.2016.05.009

    Article  Google Scholar 

  26. M. Khanzadeh, S. Chowdhury, M.A. Tschopp, H.R. Doude, M. Marufuzzaman, L. Bian, In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Trans. 51(5), 437–455 (2019). https://doi.org/10.1080/24725854.2017.1417656

    Article  Google Scholar 

  27. A. Garg, J.S.L. Lam, M.M. Savalani, A new computational intelligence approach in formulation of functional relationship of open porosity of the additive manufacturing process. Int. J. Adv. Manuf. Technol. 80(1–4), 555–565 (2015). https://doi.org/10.1007/s00170-015-6989-2

    Article  Google Scholar 

  28. J. Ning, S.Y. Liang, A comparative study of analytical thermal models to predict the orthogonal cutting temperature of AISI 1045 steel. Int. J. Adv. Manuf. Technol. 102(9–12), 3109–3119 (2019). https://doi.org/10.1007/s00170-019-03415-9

    Article  Google Scholar 

  29. J. Ning, V. Nguyen, Y. Huang, K.T. Hartwig, S.Y. Liang, Constitutive modeling of ultra-fine-grained titanium flow stress for machining temperature prediction. Bio-Des. Manuf. 2(3), 153–160 (2019). https://doi.org/10.1007/s42242-019-00044-9

    Article  Google Scholar 

  30. M. Van Elsen, M. Baelmans, P. Mercelis, J.P. Kruth, Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing. Int. J. Heat Mass Transf. 50(23–24), 4872–4882 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.044

    Article  MATH  Google Scholar 

  31. D. Rosenthal, The theory of moving sources of heat and its application of metal treatments. Trans. ASME 68, 849–866 (1946)

    Google Scholar 

  32. J. Ning, D.E. Sievers, H. Garmestani, S.Y. Liang, Analytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials 12(5), 808 (2019). https://doi.org/10.3390/ma12050808

    Article  ADS  Google Scholar 

  33. J. Ning, D.E. Sievers, H. Garmestani, S.Y. Liang, Analytical thermal modeling of metal additive manufacturing by heat sink solution. Materials 12(16), 2568 (2019). https://doi.org/10.3390/ma12162568

    Article  ADS  Google Scholar 

  34. J. Ning, E. Mirkoohi, Y. Dong, D.E. Sievers, H. Garmestani, S.Y. Liang, Analytical modeling of 3D temperature distribution in selective laser melting of Ti-6Al-4V considering part boundary conditions. J. Manuf. Process. 44, 319–326 (2019). https://doi.org/10.1016/j.jmapro.2019.06.013

    Article  Google Scholar 

  35. J. Ning, D.E. Sievers, H. Garmestani, S.Y. Liang, Analytical modeling of in-process temperature in powder feed metal additive manufacturing considering heat transfer boundary condition. J. Precis. Eng. Manuf. Green Technol. Int. (2019). https://doi.org/10.1007/s40684-019-00164-8

    Article  Google Scholar 

  36. J. Ning, D.E. Sievers, H. Garmestani, S.Y. Liang, Analytical modeling of transient temperature in powder feed metal additive manufacturing during heating and cooling stages. Appl. Phys. A 125(8), 496 (2019). https://doi.org/10.1007/s00339-019-2782-7

    Article  ADS  Google Scholar 

  37. M. Tang, P.C. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 14, 39–48 (2017). https://doi.org/10.1016/j.addma.2016.12.001

    Article  Google Scholar 

  38. Y.T. Feng, K. Han, D.R.J. Owen, Filling domains with disks: an advancing front approach. Int. J. Numer. Methods Eng. 56(5), 699–713 (2003). https://doi.org/10.1002/nme.583

    Article  MATH  Google Scholar 

  39. A.V. Gusarov, T. Laoui, L. Froyen, V.I. Titov, Contact thermal conductivity of a powder bed in selective laser sintering. Int. J. Heat Mass Transf. 46(6), 1103–1109 (2003). https://doi.org/10.1016/S0017-9310(02)00370-8

    Article  MATH  Google Scholar 

  40. J. Ning, V. Nguyen, Y. Huang, K.T. Hartwig, S.Y. Liang, Inverse determination of Johnson-Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. Int. J. Adv. Manuf. Technol. 99(5–8), 1131–1140 (2018). https://doi.org/10.1007/s00170-018-2508-6

    Article  Google Scholar 

  41. J. Ning, S.Y. Liang, Model-driven determination of Johnson-Cook material constants using temperature and force measurements. Int. J. Adv. Manuf. Technol. 97(1–4), 1053–1060 (2018). https://doi.org/10.1007/s00170-018-2022-x

    Article  Google Scholar 

  42. Y. Yang, M.F. Knol, F. Van Keulen, C. Ayas, A semi-analytical thermal modelling approach for selective laser melting. Addit. Manuf. 21, 284–297 (2018). https://doi.org/10.1016/j.addma.2018.03.002

    Article  Google Scholar 

  43. J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, B. Stucker, Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog. Addit. Manuf. 2(3), 157–167 (2017). https://doi.org/10.1007/s40964-017-0030-2

    Article  Google Scholar 

  44. M.D. Abramoff, P.J. Magalhaes, S.J. Ram, Image processing with ImageJ. Biophoton. Int. 11(7), 36–42 (2004). https://imagej.nih.gov/ij/

  45. H.W. Mindt, O. Desmaison, M. Megahed, A. Peralta, J. Neumann, Modeling of powder bed manufacturing defects. J. Mater. Eng. Perform. 27(1), 32–43 (2018). https://doi.org/10.1007/s11665-017-2874-5

    Article  Google Scholar 

  46. I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, D.J. Mynors, A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int. J. Mach. Tools Manuf. 49(12–13), 916–923 (2009). https://doi.org/10.1016/j.ijmachtools.2009.07.004

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding support from The Boeing Company.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinqiang Ning or Steven Y. Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 5, 6.

Table 5 Calculated results in the sensitivity analysis of hatch space with LT = 30 μm
Table 6 Calculated results in the sensitivity analysis of layer thickness with H = 100 μm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, J., Wang, W., Zamorano, B. et al. Analytical modeling of lack-of-fusion porosity in metal additive manufacturing. Appl. Phys. A 125, 797 (2019). https://doi.org/10.1007/s00339-019-3092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3092-9

Keywords

Navigation