Skip to main content
Log in

Effect of cobalt substitution on the multiferroic characteristics of ferroelectric potassium sodium niobate (K0.5Na0.5NbO3) ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The room-temperature multiferroic behavior of cobalt-substituted KNN [K0.5Na0.5Nb1−xCoxO3, 0.02 ≤ x ≤ 0.05] ceramics has been investigated. Both the X-ray diffraction and selected area electron diffraction analysis confirm that all the compositions found to be crystallized in the single phase (Orthorhombic, Amm2) without any formation of cobalt clusters and/or other secondary phases such as Co3O4. Co2+ oxidation state and the presence of oxygen vacancies in the samples have been studied through X-ray photoelectron spectroscopic measurements. The changes in the bandgap with the increase of Co concentration in KNN are noticed from UV–Visible absorption spectroscopy. Magnetic measurement on the samples reveals a dominant antiferromagnetic interaction attributed to the Co2+–Co2+ exchange interactions via F0-center and coupling between Co2+–Co2+ through O2−. The existence of exchange bias (EB) effect is also observed in KNaNb1−xCoxO3 (x = 0.03, 0.04, 0.05) samples from the magnetic measurements. In addition, it is found that defect complexes formed between \({\text {Co}^{'''}_{\text{Nb}}}\) and oxygen vacancy lead to the enhanced dielectric, ferro, and piezoelectric properties of K0.5Na0.5Nb1−xCoxO3 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.A. Hill, J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  Google Scholar 

  2. N.V. Dang, T.D. Thanh, L.V. Hong, V.D. Lam, T.-L. Phan, J. Appl. Phys. 110, 043914 (2011)

    Article  ADS  Google Scholar 

  3. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    Article  ADS  Google Scholar 

  4. A. Zorko, M. Pregeli, M. Gomilšek, Z. Jagličić, D. Pajić, M. Telling, I. Arčon, I. Mikulska, M. Valant, Sci. Rep. 5(7703), 1–7 (2015)

    Google Scholar 

  5. K.C. Verma, R.K. Kotnala, Mater. Res. Express 3, 055006 (2016)

    Article  ADS  Google Scholar 

  6. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)

    Article  ADS  Google Scholar 

  7. N. Kumar, A. Shukla, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 6673–6684 (2017)

    Article  Google Scholar 

  8. T.-J. Park, G.C. Papaefthymiou, A.J. Viescas, Y. Lee, H. Zhou, S.S. Wong, Phys. Rev. B 82, 024431 (2010)

    Article  ADS  Google Scholar 

  9. N. Kumar, A. Shukla, R.N.P. Choudhary, Prog. Nat. Sci. Mater. Int. 28, 308–314 (2018)

    Article  Google Scholar 

  10. N. Maikhuri, A.K. Panwar, A.K. Jha, J. Appl. Phys. 113, 17D915 (2013)

    Article  Google Scholar 

  11. N. Kumar, A. Shukla, C. Behera, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 7115–7123 (2016)

    Article  Google Scholar 

  12. N. Kumar, A. Shukla, R.N.P. Choudhary, Phys. Lett. A 381, 2721–2730 (2017)

    Article  ADS  Google Scholar 

  13. N. Kumar, A. Shukla, R.N.P. Choudhary, J. Alloy. Comp. 747, 895–904 (2018)

    Article  Google Scholar 

  14. H. Nakayama, H. K-Yoshida, Jpn. J. Appl. Phys. 40, L1355–L1358 (2001)

    Article  ADS  Google Scholar 

  15. D. Cao, B. Liu, H. Yu, W. Hu, M. Cai, Eur. Phys. J. B 88, 75, 1–7 (2015)

    Google Scholar 

  16. H. Liu, B. Cao, C.O.’ Connor, J. Appl. Phys. 109, 07B516 (2011)

    Article  Google Scholar 

  17. Y.-H. Lin, S. Zhang, C. Deng, Y. Zhang, X. Wang, C.-W. Nan, Appl. Phys. Lett. 92, 112501 (2008)

    Article  ADS  Google Scholar 

  18. H. Lemziouka, R. Moubah, F.Z. Rachid, Y. Jouane, E.K. Hill, M. Abid, H. Lassri, Ceram. Int. 42, 19402–19405 (2016)

    Article  Google Scholar 

  19. C. Song, C.Z. Wang, Y.C. Yang, X.J. Liu, F. Zeng, F. Pan, Appl. Phys. Lett. 92, 262901 (2008)

    Article  ADS  Google Scholar 

  20. A. Astudillo, J.L. Izquierdo, A. Gómez, G. Bolaños, O. Morán, J. Magn. Magn. Mater. 373, 86–89 (2015)

    Article  ADS  Google Scholar 

  21. K. Min, F. Huang, X. Lu, Y. Kan, J. Zhang, S. Peng, Y. Liu, J. Su, C. Zhang, Z. Liu, J. Zhu, Solid State Commun. 152, 304–306 (2012)

    Article  ADS  Google Scholar 

  22. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, J. Am. Chem. Soc. 136, 2905–2910 (2014)

    Article  Google Scholar 

  23. J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559 (2015)

    Article  Google Scholar 

  24. P. Kumar, M. Pattanik, Sonia, Ceram. Int. 39, 65–69 (2013)

    Article  Google Scholar 

  25. S.-Y. Liu, S. Liu, D.-J. Li, Y. Shen, H. Dang, Y. Liu, W. Xue, S. Wang, J. Am. Ceram. Soc. 97(12), 4019–4023 (2014)

    Article  Google Scholar 

  26. J. Li, W. Wu, Y. Shen, P. Zhang, Y. Wu, Q. Meng, Z. Zhou, D. Jia, J. Electron. Mater. 47(10), 5773–5779 (2018)

    Article  ADS  Google Scholar 

  27. R.D. Shannon, Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  28. S.-W. Yu, W.-C.V. Yeh, J.-L. Jou, C.-M. Lei, Ferroelectrics 456, 31–37 (2013)

    Article  Google Scholar 

  29. E. Enriquez, A. Chen, Z. Harrell, P. Dowden, N. Koskelo, J. Roback, M. Janoschek, C. Chen, Q. Jia, Sci. Rep. 7(46184), 1–8 (2017)

    Google Scholar 

  30. A. Sahai, Y. Kumar, V. Agarwal, S.F. Olive-Méndez, N. Goswami, J. Appl. Phys. 116, 164315 (2014)

    Article  ADS  Google Scholar 

  31. S.A. Lee, H. Jeong, S. Woo, J.-Y. Hwang, S.-Y. Choi, S.-D. Kim, M. Choi, S. Roh, H. Yu, J. Hwang, S.W. Kim, W.S. Choi, Sci. Rep. 6, 23649 (2016)

    Article  ADS  Google Scholar 

  32. B. Santara, P.K. Giri, S. Dhara, K. Imakita, M. Fuji, J. Phys. D Appl. Phys. 47, 235304 (2014)

    Article  ADS  Google Scholar 

  33. H.-Y. Lee, S.J. Clark, J. Robertson, Phys. Rev. B 86, 075209 (2012)

    Article  ADS  Google Scholar 

  34. A.R. West, Solid State Chemistry and its Applications, 2nd Edn. (Wiley, 2014)

    Google Scholar 

  35. P. Jiang, W. Xiang, J. Kuang, W. Liu, W. Cao, Solid State Sci. 46, 27–32 (2015)

    Article  ADS  Google Scholar 

  36. M. Kuang, T.T. Li, H. Chen, S.M. Zhang, L.L. Zhang, Y.X. Zhang, Nanotechnology 26, 304002 (2015)

    Article  Google Scholar 

  37. C. Rath, P. Mohanty, A.C. Pandey, N.C. Mishra, J. Phys. D Appl. Phys. 42, 205101 (2009)

    Article  ADS  Google Scholar 

  38. C.P. Gonzalez, G. Schileo, S. Murakami, A. Khesro, D. Wang, I.M. Reaney, A. Feteira, Appl. Phys. Lett. 110, 172902 (2017)

    Article  ADS  Google Scholar 

  39. D.V. Grinberg, M. West, G. Torres, D.M. Gou, L. Stein, G. Wu, E.M. Chen, A.R. Gallo, P.K. Akbashev, J.E. Davies, A.M. Spanier, Rappe, Nature 503, 509–512 (2013)

    Article  ADS  Google Scholar 

  40. Z. Wang, H. Gu, Y. Hu, K. Yang, M. Hu, D. Zhou, J. Guan, CrystEngComm 12, 3157–3162 (2010)

    Article  Google Scholar 

  41. L. Yu, J. Jia, G. Yi, Y. Shan, M. Han, Mater. Lett. 184, 166–168 (2016)

    Article  Google Scholar 

  42. M. Sharmila, S.M. Abdul Kader, D.E. Jain Ruth, M. Veera Gajendra Babu, B. Bagyalakshmi, R.T. Ananth Kumar, D. Pathinettam Padiyan, B. Sundarkannan, Mater. Sci. Semicond. Process. 34, 109–113 (2015)

    Article  Google Scholar 

  43. K. Shalini, N.V. Giridharan, Ferroelectrics 518, 52–58 (2017)

    Article  Google Scholar 

  44. J.A. Astudillo, S.A. Dionizio, J.L. Izquierdo, J. Heiras, O. Morán, G. Bolaños, AIP Adv. 8, 055817 (2018)

    Article  ADS  Google Scholar 

  45. A. Rani, J. Kolte, P. Gopalan, Ceram. Int. 44, 16703–16711 (2018)

    Article  Google Scholar 

  46. B.D. Cullity, C.D. Graham, Introduction to Magnetic materials, Second edn. (Wiley, Hoboken, 2008), p. 127

    Book  Google Scholar 

  47. D.L. Hou, X.J. Ye, X.Y. Zhao, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, J. Appl. Phys. 102, 033905 (2007)

    Article  ADS  Google Scholar 

  48. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004)

    Article  ADS  Google Scholar 

  49. E. Venkata Ramana, F. Figueiras, A. Mahajan, D.M. Tobaldi, B.F.O. Costa, M.P.F. Graça, M.A. Valente, J. Mater. Chem. C 4, 1066 (2016)

    Article  Google Scholar 

  50. T. Zheng, H. Deng, W. Zhou, X. Zhai, H. Cao, L. Yu, P. Yang, J. Chu, Ceram. Int. 42, 6033–6038 (2016)

    Article  Google Scholar 

  51. M. Manikandan, K. Saravana kumar, C. Venkateswaran, J. Appl. Phys. 118, 234105 (2015)

    Article  ADS  Google Scholar 

  52. L.R. Shah, B. Ali, H. Zhu, W.G. Wang, Y.Q. Song, H.W. Wang, Y.Q. Song, H.W. Zhang, S.I. Shah, J.Q. Xiao, J. Phys. Condens. Matter. 21, 486004 (2009)

    Article  Google Scholar 

  53. S.K.S. Patel, P. Dhak, M.-K. Kim, J.-H. Lee, M. Kim, S.-K. Kim, J. Magn. Magn. Mater. 403, 155–160 (2016)

    Article  ADS  Google Scholar 

  54. P. Dhak, S.K.S. Patel, M.-K. Kim, J.-H. Lee, M. Kim, S.-K. Kim, J. Magn. Magn. Mater. 408, 67–72 (2016)

    Article  ADS  Google Scholar 

  55. J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192, 203–232 (1999)

    Article  ADS  Google Scholar 

  56. G. Anjum, R. Kumar, S. Mollah, D.K. Shukla, S. Kumar, C.G. Lee, J. Appl. Phys. 107, 103916 (2010)

    Article  ADS  Google Scholar 

  57. C.G. Koops, Phys. Rev 83, 121–124 (1951)

    Article  ADS  Google Scholar 

  58. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related (Oxford University Press, Oxford, 1977) pp. 71–81

    Google Scholar 

  59. F.R. Marcos, P. Marchet, J.–R. Duclère, J.J. Romero, J.F. Fernández, Solid State Commun. 151, 1463–1466 (2011)

    Article  ADS  Google Scholar 

  60. S.H. Cha, Y.H. Han, J. Appl. Phys. 100, 104102 (2006)

    Article  ADS  Google Scholar 

  61. W.J. Jie, J. Zhu, W.F. Qin, X.H. Wei, J. Xiong, Y. Zhang, A. Bhalla, Y.R. Li, J. Phys. D Appl. Phys. 40, 2854–2857 (2007)

    Article  ADS  Google Scholar 

  62. M.-P. Zheng, Y.-D. Hou, F.-Y. Xie, J. Chen, M.-K. Zhu, H. Yan, Acta Mater 61, 1489–1498 (2013)

    Article  Google Scholar 

  63. Y. Li, J. Yuan, D. Wang, D. Zhang, H. Jin, M. Cao, J. Am. Ceram. Soc. 96(11), 3440–3447 (2013)

    Article  Google Scholar 

  64. S. Körbel, C. Elsässer, Phys. Rev. B 88, 214114 (2013)

    Article  ADS  Google Scholar 

  65. S.G. Dhumal, S.B. Kulkarni, M.E. Jayasingh, P.B. Joshi, D.J. Salunkhe, J. Mater. Sci. Mater. Electron. 27, 1421–1426 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, K. Shalini would like to thank DST, Govt. of India for the Inspire Grant offer, sanction no (DST/INSPIRE/2015/IF150668). We would like to acknowledge NRIIC, PSG institute of Advanced Studies, Coimbatore and Surface characterization lab, IIT Kanpur for TEM and XPS facility respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Giridharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalini, K., Prabhu, D. & Giridharan, N.V. Effect of cobalt substitution on the multiferroic characteristics of ferroelectric potassium sodium niobate (K0.5Na0.5NbO3) ceramics. Appl. Phys. A 124, 866 (2018). https://doi.org/10.1007/s00339-018-2288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2288-8

Navigation