Skip to main content

Ferroelectric Behavior of Mn Substituted KNN Ceramics

  • Conference paper
  • First Online:
Advanced Functional Materials and Devices

Part of the book series: Springer Proceedings in Materials ((SPM,volume 14))

  • 496 Accesses

Abstract

B-site Manganese (Mn) substituted ferroelectric potassium sodium niobate (KNN) ceramics having compositional formula K0.5Na0.5MnxNb1−xO3 (KMNN) with x values 2, 4, and 6% were prepared by conventional mixed oxide process. Substitution of Mn4+ into KNN also maintained orthorhombic symmetry confirmed from XRD. Ferroelectric properties of substituted samples were investigated by recording PE hysteresis loops with increasing temperature up to 120 °C. Hysteresis loops with varying temperatures for all materials showed considerable changes in ferroelectric nature. The Mn-substitution improves the ferroelectric parameters like coercive field (Ec), remnant polarization (Pr) and squarness (Pr/Ps) of KNN and also shows the high temperature stability which is good for memory device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zuo R, Rodel J, Che R, Li L (2006) Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J Am Ceram Soc 89:2010

    Google Scholar 

  2. Dahiya A, Thakur OP, Juneja JK, Singh S, Dipti (2014) Comparative study of 2mol% Li- and Mn-substituted lead-free potassium sodium niobate ceramics. Int J Miner Metall Mater 21:1241

    Google Scholar 

  3. Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5) NbO3 ceramics. Appl Phys Lett 87:182905

    Google Scholar 

  4. Ichiki M, Zhang L, Tanaka M, Maeda R, Eur J (2004) Electrical properties of piezoelectric sodium-potassium niobate. Ceram Soc 24:1693

    Google Scholar 

  5. Zhang S, Xia R, Shrout TR, Zhang G, Wang J (2006) Piezoelectric properties in perovskite 0.948(K0.5Na0.5) NbO3–0.052LiSbO3 lead-free ceramics. J Appl Phys 100:104

    Google Scholar 

  6. Yan Y, Cho KH, Priya S (2012) Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics. Appl Phys Lett 100:132908

    Google Scholar 

  7. Poterala SF, Trolier-McKinstry S, Meyer RJ, Messing GL (2011) Processing, texture quality, and piezoelectric properties of <001> C Textured (1-x)Pb(Mg1/3Nb2/3)TiO3-xPbTiOc ceramics. J Appl Phys 110:014105

    Google Scholar 

  8. Dahiya A, Thakur OP, Singh AK (2021) Transition metal effect on different properties of lead-free KNN ceramics. Mater Today: Proc. 47:1641

    Google Scholar 

  9. Chandramani Singh K, Chongtham J, Radhapiyari L, Thakur OP, Bhattacharya DK (2010) Structure and electrical properties of Li- and Ta-substituted (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics prepared from nanopowders. J Alloy Compd 496:717

    Google Scholar 

  10. Satio Y, Takao H (2006) High performance lead-free piezoelectric ceramics in the (K, Na)NbO3 – LiTaO3 solid solution system. Ferroelectrics 338:17

    Google Scholar 

  11. Guo Y, Kakimoto K, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 85:4121

    Google Scholar 

  12. Li JF, Wang K, Zhang BP, Zhang LM (2006) Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89:706

    Google Scholar 

  13. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoelectric ceramics vs. PZT? Nature 432:84

    Google Scholar 

  14. Jaeger RE, Egerton L (1962) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45:209

    Google Scholar 

  15. Carl K (1975) Ferroelectric properties and fatiguing effects of modified PbTiO3 ceramics. Ferroelectrics 9:23

    Google Scholar 

  16. Dai X, Xu Z, Li JF, Viehland D (1996) Effects of lanthanum modification on rhombohedral Pb(Zr1−xTix)O3 ceramics: Part I. Transformation from normal to relaxor ferroelectric behaviors. J Mater Res 11:618

    Google Scholar 

  17. Rani R, Sharma S, Rai R, Kholkin AL (2011) Investigation of dielectric and electrical properties of Mn doped sodium potassium niobate ceramic system using impedance spectroscopy. J Appl Phys 110:104102

    Google Scholar 

  18. Singh P, Singh S, Juneja J, Raina KK, Pant RP, Prakash C (2010) Effects of samarium doping on the ferroelectric properties of modified lead zirconate titanate ceramics. Int Ferroelectrics 122:23

    Google Scholar 

  19. Politova E, Golubko NV, Kaleva GM, Mosunov AV, Sadovskaya NV, Fortalnova EA, Kiselev DA, Ilina TS, Kislyuk AM, Stefanovich SY, Panda PK (2019) Phase transitions, ferroelectric and relaxor properties of nonstoichiometric NBT ceramics. Int Ferroelectrics 196:52

    Google Scholar 

  20. Zhang LX, Ren XB (2005) In situ observation of reversible domain switching in aged Mn-doped BaTiO3 single crystals. Phys Rev B 71:174108

    Google Scholar 

  21. Kumar P, Singh S, Juneja J, Prakash C, Raina KK (2009) Ferroelectric properties of substituted barium titanate ceramics. Physica B 404:1754

    Google Scholar 

  22. Dahiya A, Thakur OP, Juneja JK (2013) Sensing and actuating application of potassium sodium niobate. IEEE Xplore 383

    Google Scholar 

  23. Mia J, Liu X, Jiang M, Yang H, Chen G, Liu X, Qin L, Luo C (2013) Texture development and dielectric relaxor behavior of 0.80Na0.5Bi0.5TiO3-0.20K0.5Bi0.5TiO3 ceramics templated by plate-like NaNbO3 Particles. J Mater Sci: Mater Electron 1676

    Google Scholar 

  24. Wang K, Malic B, Wu (2018) Shifting the phase boundary: potassium sodium niobate derivates. J MRS Bull 607

    Google Scholar 

Download references

Acknowledgments

Asha Dahiya would like to thank ECR Lab., G.V.M Girls College Sonepat for providing research facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dahiya, A., Thakur, O.P., Singh, A.K. (2022). Ferroelectric Behavior of Mn Substituted KNN Ceramics. In: Krupanidhi, S.B., Gupta, V., Sharma Kaushik, A., Singh, A.K. (eds) Advanced Functional Materials and Devices. Springer Proceedings in Materials, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-16-5971-3_25

Download citation

Publish with us

Policies and ethics