Skip to main content
Log in

Effect of Mn substitution-driven structural transition on magnetic and optical properties of multiferroic Bi0.85La0.15FeO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi0.85La0.15FeO3, a Lanthanum (La) modified form of bismuth ferrite (BFO) crystallizes to crystal structure which is free from any impurity, which improves the multiferroic properties of BFO. To achieve the enhanced multiferroic characteristics, the composition of Bi0.85La0.15FeO3 has been optimized with the Mn substitution which increases magnetization more effectively than those of magnetic cations. Therefore, Bi0.85La0.15Fe1−xMnxO3 polycrystalline samples were synthesized using a tartaric acid modified sol–gel technique for x = 0.000, 0.025, 0.050, and 0.100. The effects of substitution of Mn (non-magnetic in nature) at the Fe site on crystal structure, magnetic properties, and optical properties were then investigated. The formation of crystalline phases was checked by using X-ray diffraction. The structural transition from rhombohedral (R3c, space group) to orthorhombic (Pbnm, space group) is strongly supported by the Rietveld refinement of the XRD pattern as well as analysis of Raman spectra. As Mn substitution increases, the intensity of Raman peak at about 650 cm−1 increases as well, indicating an increase in the contribution of orthorhombic phase. Magnetic properties of Bi0.85La0.15Fe1−xMnxO3 polycrystalline samples were assessed at room temperature. In Bi0.85La0.15Fe1−xMnxO3, the Mn substitution at the Fe site produced the highest magnetic moment for x = 0.025. Magnetic hysteresis loops show a substantial change in the magnetization with the increase in Mn substitution. Using the Kubelka–Munk (K–M) function and Tauc plot, the band gap energies of all the samples were calculated from UV–Vis diffuse reflectance spectra and it was observed that the band gap energy decreases with the increase in Mn substitution in Bi0.85La0.15Fe1−xMnxO3. These findings provide better understanding for tuning of the multiferroic properties of Mn substituted Bi0.85La0.15FeO3 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on the reasonable request.

References

  1. N.A. Hill, J. Phys. Chem. B 104(29), 6694 (2000)

    Article  CAS  Google Scholar 

  2. R. Seshadri, N.A. Hill, Chem. Mater 13(9), 2892 (2001)

    Article  CAS  Google Scholar 

  3. M. Fiebig, T. Lottermoser, D. Frohlich, A.V. Goltsev, R.V. Pisarev, Nature 419, 818 (2002)

    Article  CAS  Google Scholar 

  4. J. Zhang, Y.J. Wu, X.K. Chen, X.J. Chen, J. Phys. Chem. Solids 74, 849 (2013)

    Article  CAS  Google Scholar 

  5. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299(5613), 1719 (2003)

    Article  CAS  Google Scholar 

  6. Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, T.R. Shrout, J. Appl. Phys. 103, 07E507 (2008)

    Article  Google Scholar 

  7. J.F. Scott, J. Mater. Chem. 22, 4567 (2012)

    Article  CAS  Google Scholar 

  8. S. Rani, M. Shekhar, P. Kumar, S. Prasad, Appl. Phys. A 128(12), 1046 (2022)

    Article  CAS  Google Scholar 

  9. H. Xian, L. Tang, Z. Mao, J. Zhang, X. Chen, Solid State Commun. 287, 54 (2019)

    Article  CAS  Google Scholar 

  10. M.M. Rhaman, M.A. Matin, M.A. Hakim, M.F. Islam, Mater. Sci. Eng., B 263, 114842 (2021)

    Article  CAS  Google Scholar 

  11. S. Sharma, M. Kumar, G. Srinet, J.M. Siqueiros, O.R. Herrera, Ceram. Int. 47(5), 6834 (2021)

    Article  CAS  Google Scholar 

  12. Y. Liu, G. Tan, M. Guo, Z. Chai, L. Lv, M. Xue, A. Xia, X. Ren, J. Li, H. Ren, A. Xia, Ceram. Int. 45(9), 11765 (2019)

    Article  CAS  Google Scholar 

  13. G.S. Arya, R.K. Kotnala, N.S. Negi, J. Appl. Phys. 113, 044107 (2013)

    Article  Google Scholar 

  14. S. Chauhan, M. Kumar, S. Chhokar, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Solid State Commun. 152, 525 (2012)

    Article  CAS  Google Scholar 

  15. P. Harshapriya, P. Kaur, D. Basandrai, Chin. J. Phys. 84, 119 (2023)

    Article  CAS  Google Scholar 

  16. D. Kothari, V.R. Reddy, A. Gupta, D.M. Phase, N. Lakshmi, S.K. Deshpande, A.W. Awashti, J. Phys.: Condens. Matter 19, 136202 (2007)

    Google Scholar 

  17. Y.H. Lin, Q. Jiang, Y. Wang, C.W. Nan, L. Chen, J. Yu, Appl. Phys. Lett. 90(17), 172507 (2007)

    Article  Google Scholar 

  18. P.C. Sati, M. Arora, S. Chauhan, S. Chhoker, M. Kumar, J. Appl. Phys. 112, 094102 (2012)

    Article  Google Scholar 

  19. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Ceram. Int. 40, 7805 (2014)

    Article  CAS  Google Scholar 

  20. D. Do, J.W. Kim, J Am. Ceram. Soc. 94(9), 2792 (2011)

    Article  CAS  Google Scholar 

  21. P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, J. Appl. Phys. 117(19), 194103 (2015)

    Article  Google Scholar 

  22. A. Ianculescu, F.P. Gheorghiu, P. Postolache, O. Oprea, L. Mitoseriu, J. Alloys Compd. 504, 420 (2010)

    Article  CAS  Google Scholar 

  23. Y. Wang, J. Supercond. Novel Magn. 35, 3565 (2022)

    Article  CAS  Google Scholar 

  24. Z.X. Cheng, X.L. Wang, Y. Du, S.X. Dou, J. Phys. D: Appl. Phys. 43, 242001 (2010)

    Article  Google Scholar 

  25. S. Chauhan, M. Kumara, S. Chhokera, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Solid State Comm. 152, 525 (2012)

    Article  CAS  Google Scholar 

  26. M. Połomska, B. Hilczer, I. Szafraniak Wiza, A. Pietraszko, B. Andrzejewski, Phase Transit. 90, 24 (2017)

    Article  Google Scholar 

  27. K. Sen, K. Singh, A. Gautam, M. Singh, Ceram. Int. 38(1), 243 (2012)

    Article  CAS  Google Scholar 

  28. S.R. Das, R.N.P. Choudhary, P. Bhattacharya, R.S. Katiyar, P. Dutta, A. Manivannan, M.S. Seehra, J. Appl. Phys. 101, 034104 (2007)

    Article  Google Scholar 

  29. M. Tariq, A. Shaari, K. Chaudhary, R. Ahmed, M.A. Jalil, F.D. Ismail, Physica B 414, 650 (2023)

    Google Scholar 

  30. S. Chandel, P. Thakur, M. Tomar, V. Gupta, A. Thakur, Ceram. Int. 43(16), 13750 (2017)

    Article  CAS  Google Scholar 

  31. P. Kumar, M. Kar, J. Alloys. Compd. 584, 566 (2014)

    Article  CAS  Google Scholar 

  32. K. Aishwarya, R. Navamathavan, J. Alloy. Compd. 947, 169452 (2023)

    Article  CAS  Google Scholar 

  33. X.L. Liang, J.Q. Dai, J. Alloy. Compd. 886, 161168 (2021)

    Article  CAS  Google Scholar 

  34. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13(1), 251 (2011)

    Article  Google Scholar 

  35. Y. Shahmoradi, D. Souri, M. Khorshidi, Ceram. Int. 45(5), 6459 (2019)

    Article  CAS  Google Scholar 

  36. S. Fatima, S.I. Ali, M.Z. Iqbal, S. Rizwan, RSC Adv. 7(57), 35928 (2017)

    Article  CAS  Google Scholar 

  37. R. Pandey, L.K. Pradhan, P. Kumar, M. Kar, J. Phys. Chem. Solids 119, 107 (2018)

    Article  CAS  Google Scholar 

  38. J. Rodriguez Carvajal, Phys. B: Condens. Matter 192(1–2), 55–69 (1993)

    Article  CAS  Google Scholar 

  39. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106(2), 024102 (2009)

    Article  Google Scholar 

  40. X. Zheng, Q. Xu, Z. Wen, X. Lang, D. Wu, T. Qiu, M.X. Xu, J. Alloy. Compd. 499(1), 108 (2010)

    Article  CAS  Google Scholar 

  41. M. Shariq, M. Imran, E.S. Gouda, A.R. Ansari, M.A. Siddiqui, M. Sowjanya, Arab. J. Sci. Eng. 45, 475 (2020)

    Article  CAS  Google Scholar 

  42. A.A. Porporati, K. Tsuji, M. Valant, A.K. Axelsson, G. Pezzottia, J. Raman Spectrosc. 41, 84 (2010)

    Article  CAS  Google Scholar 

  43. Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, J. Appl. Phys. 111(5), 053927 (2012)

    Article  Google Scholar 

  44. J.M. Calderon-Moreno, S.S. Swamy, M. Yoshimura, Solid State Ion. 154–155, 125 (2002)

    Article  CAS  Google Scholar 

  45. Y.J. Wu, Z.X. Qin, X.K. Chen, J. Zhang, J. Liu, Z. Wu, X.J. Chen, J. Phys.: Condens. Matter 25, 365401 (2013)

    Google Scholar 

  46. F.G. Garcia, C.S. Riccardi, A.Z. Simões, J. Alloy. Compd. 501(1), 25 (2010)

    Article  Google Scholar 

  47. F. Huang, Z. Wang, X. Lu, J. Zhang, K. Min, W. Lin, R. Ti, T.T. Xu, J. He, C. Yue, J. Zhu, Sci. Rep. 3(1), 2907 (2013)

    Article  Google Scholar 

  48. S. Duhalde, M.F. Vignolo, F. Golmar, C. Chiliotte, C.E.R. Torres, L.A. Errico, A.F. Cabrera, M. Renterıa, F.H. Sanchez, M. Weissmann, Phys. Rev. B 72, 161313 (2005)

    Article  Google Scholar 

  49. L.R. Shah, H. Zhu, W.G. Wang, B. Ali, T. Zhu, X. Fan, Y.Q. Song, Q.Y. Wen, H.W. Zhang, S.I. Shah, J.Q. Xiao, J. Phys. D Appl. Phys. 43, 035002 (2010)

    Article  Google Scholar 

  50. A.F. AlHossainy, Bull. Mater. Sci. 39(1), 209 (2016)

    Article  CAS  Google Scholar 

  51. J. Tauc, R. Grigorovici, A. Vancu, Physica Status Solidi (b) 15(2), 627 (1966)

    Article  CAS  Google Scholar 

  52. H.M. Xian, Y.Q. Du, J. Zhang, X. Chen, Chin. J. Chem. Phys. 29(5), 578 (2016)

    Article  CAS  Google Scholar 

  53. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9(23), 6814 (2018)

    Article  Google Scholar 

  54. A.J. Hauser, J. Zhang, L. Mier, R.A. Ricciardo, P.M. Woodward, T.L. Gustafson et al., Appl. Phys Lett 92(22), 222901 (2008)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception and design. Material preparation, data collection, analysis and manuscript writing were performed by MS, SR, and RP. Supervision, investigation and review were done by LK, MK and PK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pawan Kumar.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, M., Rani, S., Pandey, R. et al. Effect of Mn substitution-driven structural transition on magnetic and optical properties of multiferroic Bi0.85La0.15FeO3 ceramics. J Mater Sci: Mater Electron 34, 1528 (2023). https://doi.org/10.1007/s10854-023-10962-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10962-1

Navigation