Skip to main content

Advertisement

Log in

Electric control of wave vector filtering in a hybrid magnetic-electric-barrier nanostructure

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We theoretically investigate how to manipulate the wave vector filtering effect by a traverse electric field for electrons across a hybrid magnetic-electric-barrier nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe and a Schottky-metal stripe on top and bottom of a GaAs/Al x Ga1−xAs heterostructure, respectively. The wave vector filtering effect is found to be related closely to the applied electric field. Moreover, the wave vector filtering efficiency can be manipulated by changing direction or adjusting strength of the traverse electric field. Therefore, such a nanostructure can be employed as an electrically controllable electron-momentum filter for nanoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. M. Tanaka, J.P. Harbison, J. DeBoeck, T. Sands, B. Philips, T.L. Cheeks, V.G. Keramidas, Appl. Phys. Lett. 62, 1565 (1993)

    Article  ADS  Google Scholar 

  2. H.A. Carmona, A.K. Geim, A. Nogaret, P.C. Main, T.J. Foster, M. Henini, S.P. Beaumont, M.G. Blamire, Phys. Rev. Lett. 74, 3009 (1995)

    Article  ADS  Google Scholar 

  3. A. Matulis, F.M. Peeters, P. Vasilopoulos, Phys. Rev. Lett. 72, 1518 (1994)

    Article  ADS  Google Scholar 

  4. A. Nogaret, J. Phys. Condens. Matter. 22, 253210 (2010)

    Article  ADS  Google Scholar 

  5. M.W. Lu, S.Y. Chen, X.H. Huang, G.L. Zhang, IEEE J. Electron Dev. 6, 227 (2018)

    Article  Google Scholar 

  6. F.M. Peeters, X.Q. Li, Appl. Phys. Lett. 72, 572 (1998)

    Article  ADS  Google Scholar 

  7. M. Governale, D. Boese, Appl. Phys. Lett. 77, 3215 (2000)

    Article  ADS  Google Scholar 

  8. M.W. Lu, L.D. Zhang, X.H. Yan, Nanotechnology 14, 609 (2003)

    Article  ADS  Google Scholar 

  9. Y. Guo, B.L. Gu, Z. Zeng, J.Z. Yu, Y. Kawazoe, Phys. Rev. B 62, 2635 (2000)

    Article  ADS  Google Scholar 

  10. G. Papp, F.M. Peeters, J. Phys. Condens. Mat. 16, 8275 (2004)

    Article  ADS  Google Scholar 

  11. M.W. Lu, X.L. Cao, X.H. Huang, Y.Q. Jiang, S.P. Yang, Appl. Surf. Sci. 360, 989 (2016)

    Article  ADS  Google Scholar 

  12. Y. Liu, L.L. Zhang, M.W. Lu, Y.L. Zhou, F. Li, Solid State Commun. 253, 6 (2017)

    Article  ADS  Google Scholar 

  13. M.W. Lu, S.Y. Chen, G.L. Zhang, IEEE Trans. Electron. Dev. 64, 1825 (2017)

    Article  ADS  Google Scholar 

  14. X.H. Liu, C.S. Liu, Y.J. Gong, Z.H. Tang, Philos. Mag. Lett. 97, 150 (2017)

    Article  ADS  Google Scholar 

  15. G.X. Liu, L.L. Zhang, G.L. Zhang, L.H. Shen, Appl. Phys. A 123, 241 (2017)

    Article  ADS  Google Scholar 

  16. X.H. Liu, C.S. Liu, B.H. Xiao, Y.G. Ye, Vacuum 148, 173 (2018)

    Article  ADS  Google Scholar 

  17. F. Capasso, K. Mohammed, A.Y. Cho, R. Hull, A.L. Hutchinson, Appl. Phys. Lett. 47, 420 (1985)

    Article  ADS  Google Scholar 

  18. V. Kubrak, F. Rahman, B.L. Gallagher, P.C. Main, M. Henini, C.H. Marrows, M.A. Howson, Appl. Phys. Lett. 74, 2507 (1999)

    Article  ADS  Google Scholar 

  19. A. Nogaret, S.J. Bending, M. Henini, Phys. Rev. Lett. 84, 2231 (2000)

    Article  ADS  Google Scholar 

  20. S.P. Yang, M.W. Lu, X.H. Huang, Q. Tang, Y.L. Zhou, J. Electron. Mater. 46, 1937 (2017)

    Article  ADS  Google Scholar 

  21. Y.Q. Jiang, M.W. Lu, X.H. Huang, S.P. Yang, Q. Tang, J. Electron. Mater. 45, 2796 (2016)

    Article  ADS  Google Scholar 

  22. G. Papp, F.M. Peeters, Appl. Phys. Lett. 78, 2184 (2001)

    Article  ADS  Google Scholar 

  23. Y. Guo, H. Wang, B.L. Gu, Y. Kawazoe, Phys. Rev. B 61, 1728 (2000)

    Article  ADS  Google Scholar 

  24. F. Zhai, H.Q. Xu, Y. Guo, Phys. Rev. B 70, 085308 (2004)

    Article  ADS  Google Scholar 

  25. M.W. Lu, S.Y. Chen, G.L. Zhang, X.H. Huang, J. Phys. Condens. Mat. 30, 145302 (2018)

    Article  ADS  Google Scholar 

  26. Q. Tang, M.W. Lu, X.H. Huang, Y.L. Zhou, J. Supercond. Nov. Magn. 31, 1383 (2018)

    Article  Google Scholar 

  27. Q. Tang, M.W. Lu, X.H. Huang, Y.L. Zhou, J. Nanoelectron. Optoe. 13, 132 (2018)

    Article  Google Scholar 

  28. Y. Guo, B.L. Gu, W.H. Duan, Y. Zhang, Phys. Rev. B 55, 9314 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Foundation of Education Bureau of Hunan Province, China (Grant no. 15A073) and the Construct Program of the Key Disciplines (Circuit and System) in the Hunan University of Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hong Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, YH., Lu, KY., He, YP. et al. Electric control of wave vector filtering in a hybrid magnetic-electric-barrier nanostructure. Appl. Phys. A 124, 440 (2018). https://doi.org/10.1007/s00339-018-1853-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1853-5

Navigation