Skip to main content
Log in

Effect of Rashba and Dresselhaus Spin–Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic–Electric Barrier Nanostructure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic–electric barrier nanostructure with both Rashba and Dresselhaus spin–orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin–orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin–orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin–orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. Kubrak, F. Rahman, B.L. Gallagher, P.C. Main, M. Henini, C.H. Marrows, and M.A. Howson, Appl. Phys. Lett. 74, 2507 (1999).

    Article  Google Scholar 

  2. A. Matulis, F.M. Peeters, and P. VasiloPoulos, Phys. Rev. Lett. 72, 1518 (1994).

    Article  Google Scholar 

  3. A. Nogaret, J. Phys. Condens. Matter 22, 253201 (2010).

    Article  Google Scholar 

  4. F. Zhai, Y. Guo, and B.L. Gu, Phys. Rev. B 66, 125305 (2002).

    Article  Google Scholar 

  5. M.W. Lu and L.D. Zhang, J. Phys. Condens. Matter 15, 1267 (2003).

    Article  Google Scholar 

  6. X.D. Yang, R.Z. Wang, Y. Guo, W. Yang, D.B. Yu, B. Wang, and H. Yan, Phys. Rev. B 70, 115303 (2004).

    Article  Google Scholar 

  7. A. Majumdar, Phys. Rev. B 54, 11911 (1996).

    Article  Google Scholar 

  8. V.N. Dobrovosky, D.I. Sheka, and B.V. Chemyachuk, Surf. Sci. 397, 333 (1998).

    Article  Google Scholar 

  9. Y. Guo, B.L. Gu, Z. Zeng, J.Z. Yu, and Y. Kawazoe, Phys. Rev. B 62, 2635 (2000).

    Article  Google Scholar 

  10. I. Žutíc, J. Fabiam, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  Google Scholar 

  11. G. Papp and F.M. Peeters, Appl. Phys. Lett. 78, 2184 (2001).

    Article  Google Scholar 

  12. G. Papp and F.M. Peeters, Appl. Phys. Lett. 79, 3198 (2001).

    Article  Google Scholar 

  13. H.Z. Xu and Z. Shi, Appl. Phys. Lett. 81, 691 (2002).

    Article  Google Scholar 

  14. G. Papp and F.M. Peeters, Appl. Phys. Lett. 82, 3570 (2003).

    Article  Google Scholar 

  15. F. Zhai, H.Q. Xu, and Y. Guo, Phys. Rev. B 70, 085308 (2004).

    Article  Google Scholar 

  16. J.D. Lu and L. Yi, Solid State Commun. 149, 2225 (2009).

    Article  Google Scholar 

  17. J.D. Lu, Phys. Lett. A 374, 2270 (2010).

    Article  Google Scholar 

  18. J.D. Lu, L. Yi, Y.B. Li, Y.H. Wang, and Y.L. Hou, Vacuum 86, 299 (2011).

    Article  Google Scholar 

  19. M.W. Lu, Z.Y. Wang, X.L. Cao, and S. Li, Solid State Commun. 165, 45 (2013).

    Article  Google Scholar 

  20. M.W. Lu, Z.Y. Wang, Y.L. Liang, Y.B. An, and Q.L. Li, Appl. Phys. Lett. 102, 022410 (2013).

    Article  Google Scholar 

  21. M.W. Lu, Z.Y. Wang, Y.L. Liang, Y.B. An, and Q.L. Li, EPL 101, 47001 (2013).

    Article  Google Scholar 

  22. S. Li, M.W. Lu, Y.Q. Jiang, and S.P. Yang, Phys. Lett. A 378, 3189 (2014).

    Article  Google Scholar 

  23. E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).

    Google Scholar 

  24. G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    Article  Google Scholar 

  25. Y. Jing and M.B.A. Jalil, J. Phys. Condens. Matter 15, L31 (2003).

    Article  Google Scholar 

  26. W. Xu and Y. Guo, Phys. Lett. A 340, 281 (2005).

    Article  Google Scholar 

  27. A. Nogaret, S.J. Bending, and M. Henini, Phys. Rev. Lett. 84, 2231 (2000).

    Article  Google Scholar 

  28. M.W. Lu, L.D. Zhang, and X.H. Yan, Nanotechnology 14, 609 (2003).

    Article  Google Scholar 

  29. M.W. Lu, L.D. Zhang, and X.H. Yan, Phys. Rev. B 66, 224412 (2002).

    Article  Google Scholar 

  30. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Peng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SP., Lu, MW., Huang, XH. et al. Effect of Rashba and Dresselhaus Spin–Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic–Electric Barrier Nanostructure. J. Electron. Mater. 46, 1937–1942 (2017). https://doi.org/10.1007/s11664-017-5288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5288-0

Keywords

Navigation