Skip to main content
Log in

Manipulable wave-vector filtering in a hybrid magnetic-electric-barrier nanostructure

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We theoretically explore the control of the wave-vector filtering (WVF) effect in a hybrid magnetic-electric-barrier nanostructure, which can be experimentally realized by depositing a ferromagnetic (FM) stripe and a Schottky-metal (SM) stripe on top and bottom of a GaAs/Al\(_{\text {x}}\)Ga\(_{1-x}\)As heterostructure, respectively. It is shown that an obvious WVF effect appears in such a device. It is also shown that the degree of the WVF effect is related to the width and position of the SM stripe. In particular, the WVF effect can be tuned by the applied voltage to the SM stripe, and thus a manipulable momentum filter can be obtained for nanoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. F. Capasso, K. Mohammed, A.Y. Cho, R. Hull, A.L. Hutchinson, Appl. Phys. Lett. 47, 420 (1985)

    Article  ADS  Google Scholar 

  2. H.A. Carmona, A.K. Geim, A. Nogaret, P.C. Main, T.J. Foster, M. Henini, S.P. Beaumont, M.G. Blamire, Phys. Rev. Lett. 74, 3009 (1995)

    Article  ADS  Google Scholar 

  3. L. Dell’Anna, A. De Martino, Phys. Rev. B 80, 155416 (2009)

    Article  ADS  Google Scholar 

  4. G. Papp, P. Vasilopoulos, F.M. Peeters, 72, 115315 (2005)

  5. Y. Guo, B.L. Gu, Z. Zeng, J.Z. Yu, Y. Kawazoe, Phys. Rev. B 62, 2635 (2000)

    Article  ADS  Google Scholar 

  6. Y. Guo, H. Wang, B.L. Gu, Y. Kawazoe, Phys. Rev. B 61, 1728 (2000)

    Article  ADS  Google Scholar 

  7. Y.Q. Jiang, M.W. Lu, X.H. Huang, S.P. Yang, Q. Tang, J. Electr. Mater. 45, 4796 (2016)

    Article  Google Scholar 

  8. Y.H. Kong, S.Y. Chen, A.H. Li, X. Fu, Vacuum 122, 43 (2015)

    Article  ADS  Google Scholar 

  9. V. Kubrak, F. Rahman, B.L. Gallagher, P.C. Main, M. Henini, C.H. Marrows, M.A. Howson, Appl. Phys. Lett. 74, 2507 (1999)

    Article  ADS  Google Scholar 

  10. S. Li, M.W. Lu, Y.Q. Jiang, S.Y. Chen, AIP Adv. 4, 097112 (2014)

    Article  ADS  Google Scholar 

  11. M.W. Lu, Appl. Surf. Sci. 252, 1747 (2005)

    Article  ADS  Google Scholar 

  12. J.D. Lu, Appl. Surf. Sci. 255, 7438 (2009)

    Google Scholar 

  13. M.W. Lu, X.L. Cao, X.H. Huang, Y.Q. Jiang, S.P. Yang, Appl. Surf. Sci. 360, 989 (2016)

    Article  ADS  Google Scholar 

  14. J.D. Lu, Y.B. Li, S.J. Peng, H.Y. Liu, Y.H. Wang, H. Chen, Phys. Lett. A 380, 1668 (2016)

    Article  ADS  Google Scholar 

  15. M.W. Lu, Z.Y. Wang, X.L. Cao, S. Li, Solid State Commun. 165, 45 (2013)

    Article  ADS  Google Scholar 

  16. M.W. Lu, Z.Y. Wang, Y.L. Liang, Y.B. An, L.Q. Li, Appl. Phys. Lett. 102, 022410 (2013)

    Article  ADS  Google Scholar 

  17. M.W. Lu, Z.Y. Wang, Y.L. Liang, Y.B. An, L.Q. Li, EPL 101, 47001 (2013)

    Article  ADS  Google Scholar 

  18. M.W. Lu, L.D. Zhang, J. Phys. Condens. Mat. 15, 1267 (2003)

    Article  ADS  Google Scholar 

  19. M.W. Lu, L.D. Zhang, X.H. Yan, Phys. Rev. B 66, 224412 (2002)

    Article  ADS  Google Scholar 

  20. M.W. Lu, L.D. Zhang, X.H. Yan, Nanotechnology 14, 609 (2003)

    Article  ADS  Google Scholar 

  21. W.Y. Ma, G.L. Zhang, S.Y. Chen, Y.Q. Jiang, S. Li, Phys. Lett. A 378, 1642 (2014)

    Article  Google Scholar 

  22. A. Matulis, F.M. Peeters, P. Vasilopoulos, Phys. Rev. Lett. 72, 1518 (1994)

    Article  ADS  Google Scholar 

  23. A. Nogaret, J. Phys.: Condens. Matter 22, 253210 (2010)

    ADS  Google Scholar 

  24. A. Nogaret, S.J. Bending, M. Henini, Phys. Rev. Lett. 84, 2231 (2000)

    Article  ADS  Google Scholar 

  25. G. Papp, F.M. Peeters, Appl. Phys. Lett. 78, 2184 (2001)

    Article  ADS  Google Scholar 

  26. G. Papp, F.M. Peeters, J. Phys. Condens. Mat. 16, 8275 (2004)

    Article  ADS  Google Scholar 

  27. F.M. Peeters, X.Q. Li, Appl. Phys. Lett. 72, 572 (1998)

    Article  ADS  Google Scholar 

  28. L.H. Shen, G.L. Ma, D.C. Yang, Phys. E 83, 450 (2016)

    Article  Google Scholar 

  29. L.H. Shen, W.Y. Ma, G.L. Zhang, S.P. Yang, Phys. E 71, 39 (2015)

    Article  Google Scholar 

  30. H.Z. Xu, Y.F. Zhang, Appl. Phys. Lett. 84, 1995 (2004)

    ADS  Google Scholar 

  31. F. Zhai, Y. Guo, B.L. Gu, Phys. Rev. B 66, 125305 (2002)

    Article  ADS  Google Scholar 

  32. F. Zhai, H.Q. Xu, Y. Guo, Phys. Rev. B 70, 085308 (2004)

    Article  ADS  Google Scholar 

  33. L.L. Zhang, M.W. Lu, S.P. Yang, Q. Tang, Phys. Lett. A 380, 3250 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61464004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan-Lan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, GX., Zhang, LL., Zhang, GL. et al. Manipulable wave-vector filtering in a hybrid magnetic-electric-barrier nanostructure. Appl. Phys. A 123, 241 (2017). https://doi.org/10.1007/s00339-017-0846-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0846-0

Keywords

Navigation