Skip to main content
Log in

Energetic ion-induced modification of embedded Au nanoparticles size: a three-dimensional kinetic lattice Monte Carlo study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanometer-sized noble metallic particles embedded in dielectric matrices are of wide interest. To exploit their plasmonic properties, efforts have been made to vary their size and shape by various methods during or after fabrication. Energetic ion irradiation has been found to be very useful in this objective. In the present work, we have studied the effect of inter-particle separation using atomistic simulations to gain a better understanding of the pathway in the modification of size of nanoparticles which are smaller than the ion track size in the matrix. It is found that the size of nanoparticles can be varied depending on the initial inter-particle separation and the temperature in the spike generated by the passed energetic ion. The results agree with the model proposed by our group, based on inter-particle separation, to explain experimental results on the swift heavy ion-induced modification of the size of embedded nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Jana, M. Ganguly, T. Pal, RSC Adv. 6, 86174 (2016)

    Article  Google Scholar 

  2. M.A. Garcia, J. Phys. D Appl. Phys. 44, 283001 (2011)

    Article  Google Scholar 

  3. G. Xu, M. Tazawa, P. Jin, S. Nakao, Appl. Phys. A 80, 1535 (2004)

    Article  ADS  Google Scholar 

  4. K. Chan, B.T. Goh, S.A. Rahman, M.R. Muhamad, C.F. Dee, Z. Aspanut, Vacuum 86, 1367 (2012)

    Article  ADS  Google Scholar 

  5. D. Kabiraj, S.R. Abhilash, L. Vanmarcke, N. Cinausero, J.C. Pivin, D.K. Avasthi, Nucl. Instrum. Method Phys. Res. Sect. B Beam Interact. Mater. Atoms 244, 100 (2006)

    Article  ADS  Google Scholar 

  6. G. Rizza, E.A. Dawi, A.M. Vredenberg, I. Monnet, Appl. Phys. Lett. 95, 043105 (2009)

    Article  ADS  Google Scholar 

  7. M.C. Ridgway et al., Phys. Rev. Lett. 106, 095505 (2011)

    Article  ADS  Google Scholar 

  8. E.A. Dawi, G. Rizza, M.P. Mink, A.M. Vredenberg, F.H.P.M. Habraken, J. Appl. Phys. 105, 074305 (2009)

    Article  ADS  Google Scholar 

  9. P.-E. Coulon et al., Sci. Rep. 6, 21116 (2016)

    Article  ADS  Google Scholar 

  10. D.K. Avasthi, Y.K. Mishra, F. Singh, J.P. Stoquert, Nucl. Instrum. Method Phys. Res. Sect. B Beam Interact. Mater. Atoms 268, 3027 (2010)

    Article  ADS  Google Scholar 

  11. Y. Yang, C. Zhang, Y. Song, J. Gou, L. Zhang, Y. Meng, H. Zhang, Y. Ma, Nucl. Instrum. Methods Phys. Res. Sect. B 308, 24 (2013)

    Article  ADS  Google Scholar 

  12. F.P. Luce, E. Oliviero, G.d..M. Azevedo, D.L. Baptista, F.C. Zawislak, P.F.P. Fichtner, J. Appl. Phys. 119, 035901 (2016)

    Article  ADS  Google Scholar 

  13. E.A. Dawi, A.M. Vredenberg, G. Rizza, M. Toulemonde, Nanotechnology 22, 215607 (2011)

    Article  ADS  Google Scholar 

  14. R. Giulian, P. Kluth, L.L. Araujo, D.J. Sprouster, A.P. Byrne, D.J. Cookson, M.C. Ridgway, Phys. Rev. B 78, 125413 (2008)

    Article  ADS  Google Scholar 

  15. I.B. Radović, M. Buljan, M. Karlušić, M. Jerčinović, G. Dražič, S. Bernstorff, R. Boettger, New J. Phys. 18, 093032 (2016)

    Article  Google Scholar 

  16. C.H. Kerboua, J.M. Lamarre, M. Chicoine, L. Martinu, S. Roorda, Thin Solid Films 527, 186 (2013)

    Article  ADS  Google Scholar 

  17. Y.K. Mishra, D. Kabiraj, D.K. Avasthi, J.C. Pivin, Radiat. Eff. Defects Solids 162, 207 (2007)

    Article  ADS  Google Scholar 

  18. Y.K. Mishra, D.K. Avasthi, P.K. Kulriya, F. Singh, D. Kabiraj, A. Tripathi, J.C. Pivin, I.S. Bayer, A. Biswas, Appl. Phys. Lett. 90, 073110 (2007)

    Article  ADS  Google Scholar 

  19. S.A. Khan, K.H. Heinig, D.K. Avasthi, J. Appl. Phys. 109, 094312 (2011)

    Article  ADS  Google Scholar 

  20. M. Toulemonde, J. Costantini, C. Dufour, A. Meftah, E. Paumier, F. Studer, Nucl. Instrum. Methods Phys. Res. Sect. B 116, 37 (1996)

    Article  ADS  Google Scholar 

  21. M. Toulemonde, W.J. Weber, G. Li, V. Shutthanandan, P. Kluth, T. Yang, Y. Wang, Y. Zhang, Phys. Rev. B 83, 054106 (2011)

    Article  ADS  Google Scholar 

  22. T.H.Y. Vu, Y. Ramjauny, G. Rizza, M. Hayoun, J. Appl. Phys. 119, 034302 (2016)

    Article  ADS  Google Scholar 

  23. K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, T. Komatsubara, Phys. Rev. B 78, 054102 (2008)

    Article  ADS  Google Scholar 

  24. S. Srivastava, D. Avasthi, W. Assmann, Z. Wang, H. Kucal, E. Jacquet, H. Carstanjen, M. Toulemonde, Phys. Rev. B 71, 193405 (2005)

    Article  ADS  Google Scholar 

  25. M. Strobel, K.H. Heinig, W. Moller, A. Meldrum, D.S. Zhou, C.W. White, R.A. Zuhr, Nucl. Instrum. Method Phys. Res. Sect. B Beam Interact. Mater. Atoms 147, 343 (1999)

    Article  ADS  Google Scholar 

  26. P. Novikov, K.H. Heinig, A. Larsen, A. Dvurechenskii, Nucl. Instrum. Method Phys. Res. Sect. B Beam Interact. Mater. Atoms 191, 462 (2002)

    Article  ADS  Google Scholar 

  27. E.M. Bringa, R.E. Johnson, M. Jakas, Phys. Rev. B 60, 15107 (1999)

    Article  ADS  Google Scholar 

  28. M. Strobel, K.H. Heinig, W. Moller, Phys. Rev. B 64, 245422 (2001)

    Article  ADS  Google Scholar 

  29. F. Ruffino, A. Canino, M.G. Grimaldi, F. Giannazzo, C. Bongiorno, F. Roccaforte, V. Raineri, J. Appl. Phys. 101, 064306 (2007)

    Article  ADS  Google Scholar 

  30. S.A. Khan, S.K. Srivastava, D.K. Avasthi, J. Phys. D Appl. Phys. 45, 375304 (2012)

    Article  ADS  Google Scholar 

  31. H. Amekura, K. Kono, N. Okubo, N. Ishikawa, Phys. Status Solidi (B) 252, 165 (2015)

    Article  ADS  Google Scholar 

  32. O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson, J. Am. Chem. Soc. 132, 16 (2010)

    Article  Google Scholar 

  33. M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, A. Takami, Appl. Phys. Lett. 79, 1528 (2001)

    Article  ADS  Google Scholar 

  34. Y.H. Kim, C.W. Kim, H.G. Cha, D.K. Lee, B.K. Jo, G.W. Ahn, E.S. Hong, J.C. Kim, Y.S. Kang, J. Phys. Chem. C 113, 5105 (2009)

    Article  Google Scholar 

  35. R. Zanella, C. Louis, Catal. Today 107–108, 768 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to Dr. K.-H. Heinig for introducing SAK to 3D kinetic lattice Monte Carlo techniques and Dr. M. Toulemonde (CIMAP, France) for providing the thermal spike code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonu Hooda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.A., Avasthi, D.K. & Hooda, S. Energetic ion-induced modification of embedded Au nanoparticles size: a three-dimensional kinetic lattice Monte Carlo study. Appl. Phys. A 124, 351 (2018). https://doi.org/10.1007/s00339-018-1775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1775-2

Navigation