Skip to main content
Log in

Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.J. Willey, P. Noirclerc, G. Busca, Chem. Eng. Commun. 123, 1–16 (1993)

    Article  Google Scholar 

  2. U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, J. Magn. Magn. Mater. (2016). doi:10.1016/j.jmmm.2016.01.022

    Google Scholar 

  3. J. Gao, Z. Yan, J. Liu, M. Zhang, M. Guo, Mater. Lett. 141, 122–124 (2015)

    Article  Google Scholar 

  4. R. Valenzuela, Magnetic Ceramics (Cambridge University Press, New York, 1994)

    Book  Google Scholar 

  5. J.F. Shackelford, Introduction to Material Science for Engineering, 1st edn. (Prentice Hall, New Jersey, 1999)

    Google Scholar 

  6. A. Gurbuz, N. Onar, I. Ozdemir, A.C. Karaoglanli, E. Celik, Mater. Technol. 46, 305–310 (2012)

    Google Scholar 

  7. W.K. Ng, J. Ding, Y.Y. Chow, S. Wang, Y. Shi, J. Mater. Res. 15(10), 2151–2156 (2000)

    Article  ADS  Google Scholar 

  8. A. Ghasemi, J. Alloys. Compd. 645, 467–477 (2015)

    Article  Google Scholar 

  9. A. Loganathan, K. Kumar, Appl. Nanosci. 6, 629–639 (2016)

    Article  ADS  Google Scholar 

  10. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley Publishing Company Inc, Phillippines, 1978)

    MATH  Google Scholar 

  11. B. Bhushan, Springer Handbook of Nanotechnology, 3rd edn. (Springer, Heidelberg, 2010)

    Book  Google Scholar 

  12. A.M. Wahba, M.B. Mohamed, Ceram. Int. 40, 6127–6135 (2014)

    Article  Google Scholar 

  13. M.A. Amer et al., Mater. Chem. Phys. (2015). doi:10.1016/j.matchemphys.2015.06.013

    Google Scholar 

  14. I. Ali, M.U. Islam, M. Ishaque, H.M. Khan, M.N. Ashiq, M.U. Rana, J. Magn. Magn. Mater. 324, 3773–3777 (2012)

    Article  ADS  Google Scholar 

  15. R.T. Kumar, N.C.S. Selvam, C. Ragupathi, L.J. Kennedy, J.J. Vijaya, Powder Technol. 224, 147–154 (2012)

    Article  Google Scholar 

  16. N. Lwin, M.N. Ahmad Fauzi, S. Sreekantan, R. Othman, Phys. B 461, 134–139 (2015)

    Article  ADS  Google Scholar 

  17. M.A. Gabal, Y.M. Angari, A.Y. Obaid, A. Qusti, Adv. Powder Technol. 25, 457–461 (2014)

    Article  Google Scholar 

  18. E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, J. Mater. Sci. 28, 241–249 (2016). doi:10.1007/s10854-016-5517-y

    Google Scholar 

  19. H. Kojitani, K. Nishimura, A. Kubo et al., Phys. Chem. Miner. 30, 409 (2003). doi:10.1007/s00269-003-0332-4

    Article  ADS  Google Scholar 

  20. S.L. Kakani, C. Hemrajani, Text Book of Solid State Physics (Sultan Chand & Sons, New Delhi, 1997)

    Google Scholar 

  21. K.B. Modi, P.Y. Raval, S.J. Shah, C.R. Kathad, S.V. Dulera et al., Inorg. Chem. (2015). doi:10.1021/ic502497a.2014

    Google Scholar 

  22. A.N. Vtyurin, L.I. Isaenko, S.N. Krylova, A. Yelisseyev, A.P. Shebanin, P.P. Turchin et al., Phys. Stat. Solidi C 1(11), 3142–3145 (2004). doi:10.1002/pssc.200405401

    Article  Google Scholar 

  23. S.C. Watawe, B.D. Sutar, B.D. Sarwade, B.K. Chougule, Int. J. Inorg. Mater. 3, 819–823 (2001)

    Article  Google Scholar 

  24. W.A. Wooster, Rep. Progress. Phys. 16, 62–82 (1953)

    Article  ADS  Google Scholar 

  25. N.I. Abu-Elsaad, J. Mol. Struct. 1075, 546–550 (2014)

    Article  ADS  Google Scholar 

  26. M.B. Mohamed, A.M. Wahba, Ceram. Int. (2014). doi:10.1016/j.ceramint.2014.04.006

    Google Scholar 

  27. R.D. Waldron, Phys. Rev. 99, 1727–1735 (1955)

    Article  ADS  Google Scholar 

  28. K.B. Modi, M.K. Rangolia, M.C. Chhantbar, H.H. Joshi, J. Mater. Sci. 41, 7308–7318 (2006)

    Article  ADS  Google Scholar 

  29. V.V. Awati et al., Results Phys. (2016). doi:10.1016/j.rinp.2016.04.005

    Google Scholar 

  30. S.A. Mazen, T.A. Elmosalami, Int. Sch. Res. Netw. (2011). doi:10.5402/2011/820726

    Google Scholar 

  31. I. Zālīte, G. Heidemane, M. Kodols, J. Grabis, M. Maiorov, Mater. Sci. 18, 3–7 (2012)

    Google Scholar 

  32. M.M. Eltabey, W.R. Agami, H.T. Mohsen, J. Adv. Res. 5(5), 601–605 (2014)

    Article  Google Scholar 

  33. Z. Peng, X. Fu, H. Ge, Z. Fu, Z. Wang, L. Qi et al., J. Magn. Magn. Mater. 323, 2513–2518 (2011)

    Article  ADS  Google Scholar 

  34. H. Moradmard, S.F. Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, Alloys. Compd. (2015). doi:10.1016/j.jallcom

    Google Scholar 

  35. E.E. Ateia, G. Abdelatif, M.A. Ahmed, M.A. Mahmoud, J. Inorg. Organomet. Poly. Mater. 25, 81–90 (2015)

    Article  Google Scholar 

  36. S.S. Khot, N.S. Shinde, B.P. Ladgaonkar, B.B. Kale, S.C. Watawe, Adv. Appl. Sci. Res. 2(4), 460–471 (2011)

    Google Scholar 

  37. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, J. Mater. (2014). doi:10.1155/2014/184340

    Google Scholar 

  38. E.E. Ateia, A.T. Mohamed, Mater Sci. 28, 10035–10041 (2017)

    Google Scholar 

  39. Curie Temperature of Isolators and Circulators (Skyworks Solutions, Inc, 2011), www.skyworksinc.com. Accessed 1 Sept 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira T. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Takla, E. & Mohamed, A.T. Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites. Appl. Phys. A 123, 631 (2017). https://doi.org/10.1007/s00339-017-1246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1246-1

Navigation