Skip to main content
Log in

Dual-band graphene-induced plasmonic quarter-wave plate metasurface in the near infrared

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Weak graphene plasmon is a key challenge for graphene-based metasurfaces in the visible and near-infrared regions. In this study, we have numerically designed and demonstrated a tunable, ultrathin, hybrid dual-band quarter-wave plate metasurface, which comprises of graphene, metal, and glass. Tunable birefringence has been obtained through the number of layers of graphene, its Fermi energy, metal dimensions, and the periodicity. The design also achieves a 95% polarization conversion ratio from a linear state to a circular state with a near unity value of ellipticity at a design wavelength in the near-infrared. The ultrathin thickness of the structure, 0.1\(\lambda \), and an embedding glass makes the structure compact and easily integrable for photonic-sensing application in the near-infrared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.F. Koenderink, A. Alù, A. Polman, Science 348(6234), 516 (2015)

    Article  ADS  Google Scholar 

  2. T. Low, P. Avouris, ACS Nano 8(2), 1086 (2014)

    Article  Google Scholar 

  3. J. Zeng, L. Li, X. Yang, J. Gao, Nano Lett. 16(5), 3101 (2016)

    Article  ADS  Google Scholar 

  4. L. Wu, Z. Yang, Y. Cheng, R. Gong, M. Zhao, Y. Zheng, J. Duan, X. Yuan, Appl. Phys. A 116(2), 643 (2014)

    Article  ADS  Google Scholar 

  5. A. Djalalian-Assl, J.J. Cadusch, Z.Q. Teo, T.J. Davis, A. Roberts, Appl. Phys. Lett. 106(4), 041104 (2015)

    Article  ADS  Google Scholar 

  6. A. Djalalian-Assl, J.J. Cadusch, E. Balaur, M. Aramesh, Opt. Lett. 41(13), 3146 (2016)

    Article  ADS  Google Scholar 

  7. B. Yang, W.M. Ye, X.D. Yuan, Z.H. Zhu, C. Zeng, Opt. Lett. 38(5), 679 (2013)

    Article  ADS  Google Scholar 

  8. D. Wang, L. Zhang, Y. Gu, M. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.W. Qiu, M. Hong, Sci. Rep. 5, 15020 (2015)

    Article  ADS  Google Scholar 

  9. A. Roberts, L. Lin, Opt. Lett. 37(11), 1820 (2012)

    Article  ADS  Google Scholar 

  10. P. Yu, J. Li, C. Tang, H. Cheng, Z. Liu, Z. Li, Z. Liu, C. Gu, J. Li, S. Chen, J. Tian, Light Sci. Appl. 5(7), e16096 (2016)

    Article  Google Scholar 

  11. Z. Li, N. Yu, Appl. Phys. Lett. 102(13), 131108 (2013)

    Article  ADS  Google Scholar 

  12. A. Ahmadivand, R. Sinha, M. Karabiyik, P.K. Vabbina, B. Gerislioglu, S. Kaya, N. Pala, J. Nanopart. Res. 19(1), 3 (2017)

    Article  ADS  Google Scholar 

  13. R. Yu, V. Pruneri, D.A.F. García, Sci. Rep. 6, 32144 (2016)

    Article  ADS  Google Scholar 

  14. N. Dabidian, I. Kholmanov, A.B. Khanikaev, K. Tatar, S. Trendafilov, S.H. Mousavi, C. Magnuson, R.S. Ruoff, G. Shvets, ACS Photon. 2(2), 216 (2015)

    Article  Google Scholar 

  15. J.S. Gómez-Díaz, J. Perruisseau-Carrier, Opt. Express 21(13), 15490 (2013)

    Article  ADS  Google Scholar 

  16. W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P.M. Ajayan, J. Kono, Q. Xu, Nano Lett. 13(8), 3698 (2013)

    Article  ADS  Google Scholar 

  17. P. Alonso-González, A.Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. Hueso, R. Hillenbrand, Science 344(6190), 1369 (2014)

    Article  ADS  Google Scholar 

  18. Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, S. Qin, Appl. Phys. A 114(4), 1017 (2014)

    Article  ADS  Google Scholar 

  19. J. Peng, Z. Zhu, J. Zhang, X. Yuan, S. Qin, Appl. Phys. Express 9(5), 055102 (2016)

    Article  ADS  Google Scholar 

  20. S. Arezoomandan, K. Yang, B. Sensale-Rodriguez, Appl. Phys. A 117(2), 423 (2014)

    Article  Google Scholar 

  21. J.S. Shin, J.S. Kim, J.T. Kim, J. Opt. 17(12), 125801 (2015)

    Article  ADS  Google Scholar 

  22. Q. Zhang, X. Li, M.M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M.D. Turner, S. Fan, Q. Bao, M. Gu, Sci. Rep. 4, 6559 (2014)

    Article  ADS  Google Scholar 

  23. Z.X. Chen, J.H. Chen, Z.J. Wu, W. Hu, X.J. Zhang, Y.Q. Lu, Appl. Phys. Lett. 104(16), 161114 (2014)

    Article  ADS  Google Scholar 

  24. Y. Huang, Z. Yao, F. Hu, Q. Wang, L. Yu, X. Xu, Plasmonics 11(4), 963 (2016)

    Article  Google Scholar 

  25. J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, H. Zhang, Plasmonics 10(2), 351 (2015)

    Article  Google Scholar 

  26. T. Guo, C. Argyropoulos, Opt. Lett. 41(23), 5592 (2016)

    Article  ADS  Google Scholar 

  27. Z.X. Chen, Z.G. Chen, Y. Ming, Y. Wu, Y.Q. Lu, Appl. Phy. Express 9(2), 025101 (2016)

    Article  ADS  Google Scholar 

  28. J. Hu, H. Zeng, C. Wang, Z. Li, C. Kan, Y. Liu, Phys. Chem. Chem. Phys. 16(42), 23483 (2014)

    Article  Google Scholar 

  29. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P.M. Ajayan, P. Nordlander, N.J. Halas, F.J. García de Abajo, ACS Nano 7(3), 2388 (2013)

    Article  Google Scholar 

  30. L. Wang, X.W. Lin, W. Hu, G.H. Shao, P. Chen, L.J. Liang, B.B. Jin, P.H. Wu, H. Qian, Y.N. Lu, X. Liang, Z.G. Zheng, Y.Q. Lu, Light Sci. Appl. 4(2), e253 (2015)

    Article  Google Scholar 

  31. C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, J. Du, Appl. Phys. Express 9(5), 052001 (2016)

    Article  ADS  Google Scholar 

  32. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, T. Jiang, Opt. Express 23(21), 27230 (2015)

    Article  ADS  Google Scholar 

  33. J. Wang, W. Wu, Opt. Express 25(4), 3805 (2017)

    Article  ADS  Google Scholar 

  34. M.S. Zare, N. Nozhat, R. Rashiditabar, Appl. Opt. 55(34), 9764 (2016)

    Article  ADS  Google Scholar 

  35. F.H. Koppens, D.E. Chang, F.J. García de Abajo, Nano Lett. 11(8), 3370 (2011)

    Article  ADS  Google Scholar 

  36. L. Falkovsky, in Journal of Physics: Conference Series (IOP Publishing, Bristol, vol. 129, 2008), p. 012004

  37. N.K. Emani, D. Wang, T.F. Chung, L.J. Prokopeva, A.V. Kildishev, V.M. Shalaev, Y.P. Chen, A. Boltasseva, Laser Photon. Rev. 9(6), 650 (2015)

    Article  Google Scholar 

  38. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, H. Zhang, Sci. Rep. 4, 6128 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research Program of China (No. 2013CB328702) and the National Natural Science Foundation of China (NSFC) (Nos. 11374074, 61308069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edgar Owiti or Xiudong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owiti, E., Yang, H., Ominde, C. et al. Dual-band graphene-induced plasmonic quarter-wave plate metasurface in the near infrared. Appl. Phys. A 123, 556 (2017). https://doi.org/10.1007/s00339-017-1147-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1147-3

Navigation