Skip to main content

Advertisement

Log in

Manipulating Magnetoinductive Coupling with Graphene-Based Plasmonic Metamaterials in THz Region

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Coupling between physical modes can trigger some new physical phenomena such as frequency shift, new mode, and Rabi splitting. Resonant modes in graphene-based metamaterials provide a new platform for the research of coupling. In this work, we demonstrate that the plasmonic coupling of split ring resonator (SRR) dimer in graphene-based metamaterials can be easily manipulated. This magnetoinductive coupling can switch on/off the dark modes easily, which is usually done by symmetry-breaking structure previously. Furthermore, the dark mode can also be activated by Fermi energy as well as carrier concentration changing with either physical or chemical methods conveniently. In addition, different graphene-based SRR dimer configurations present different coupling strengths, which benefits the designing and optimizing of graphene-based metamaterials. The demonstration could enhance the versatility of both coupling studies in terahertz (THz) region and graphene-based metamaterials for THz devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khitrova G et al (2006) Vacuum Rabi splitting in semiconductors. Nat Phys 2(2):81–90

    Article  CAS  Google Scholar 

  2. Prodan E (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  Google Scholar 

  3. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067

    Article  CAS  Google Scholar 

  4. Lassiter JB et al (2008) Close encounters between two nanoshells. Nano Lett 8(4):1212–1218

    Article  CAS  Google Scholar 

  5. Maillard M, Giorgio S, Pileni MP (2003) Tuning the size of silver nanodisks with similar aspect ratios: 65 synthesis and optical properties. J Phys Chem B 107(11):2466–2470

    Article  CAS  Google Scholar 

  6. Hui W et al (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6(4):827–832

    Article  Google Scholar 

  7. Hao F et al (2007) Plasmon resonances of a gold nanostar. Nano Lett 7(3):729–732

    Article  CAS  Google Scholar 

  8. Liu N, Giessen H (2010) Coupling effects in optical metamaterials. Angew Chem Int Ed 49(51):9838–9852

    Article  CAS  Google Scholar 

  9. Luk’Yanchuk B et al (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715

    Article  Google Scholar 

  10. Liu N et al (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8(9):758–762

    Article  CAS  Google Scholar 

  11. Huang Y et al. (2015) Coupling Tai Chi chiral metamaterials with strong optical activity in Terahertz Region. Plasmonics 10(4):1005–1011

  12. Novoselov K et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  CAS  Google Scholar 

  13. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  14. Liu M et al (2011) A graphene-based broadband optical modulator. Nature 474(7349):64–67

    Article  CAS  Google Scholar 

  15. Sensale-Rodriguez B et al (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3:780

    Article  Google Scholar 

  16. Alaee R et al (2012) A perfect absorber made of a graphene micro-ribbon metamaterial. Opt Express 20(27):28017–28024

    Article  CAS  Google Scholar 

  17. Nikitin AY et al (2012) Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys Rev B 85(8):081405

    Article  Google Scholar 

  18. Zhu Z et al (2014) Electrically tunable polarizer based on anisotropic absorption of graphene ribbons. Appl Phys A 114(4):1017–1021

    Article  CAS  Google Scholar 

  19. Zhou Y et al (2014) Graphene as broadband terahertz antireflection coating. Appl Phys Lett 104(5):051106

    Article  Google Scholar 

  20. Li J et al (2014) Graphene–metamaterial hybridization for enhanced terahertz response. Carbon 78(18):102–112

    Article  CAS  Google Scholar 

  21. Cakmakyapan S, Caglayan H, Ozbay E (2014) Coupling enhancement of split ring resonators on graphene. Carbon 80(80):351–355

    Article  CAS  Google Scholar 

  22. Koppens FH, Chang DE, de Abajo FJG (2011) Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett 11(8):3370–3377

    Article  CAS  Google Scholar 

  23. Echtermeyer T et al (2011) Strong plasmonic enhancement of photovoltage in graphene. Nat Commun 2:458

    Article  CAS  Google Scholar 

  24. Ju L et al (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634

    Article  CAS  Google Scholar 

  25. Lee SH et al (2012) Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11(11):936–941

    Article  CAS  Google Scholar 

  26. Forouzmand A, Yakovlev AB (2015) Tunable dual-band subwavelength imaging with a wire medium slab loaded with nanostructured graphene metasurfaces. AIP Adv 5(7):077108

    Article  Google Scholar 

  27. Wu L et al (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    Article  CAS  Google Scholar 

  28. Christensen J et al (2011) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440

    Article  Google Scholar 

  29. Ishikawa A, Tanaka T (2013) Plasmon hybridization in graphene metamaterials. Appl Phys Lett 102(25):253110

    Article  Google Scholar 

  30. Fang Z et al (2013) Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7(3):2388–2395

    Article  CAS  Google Scholar 

  31. Grigorenko A, Polini M, Novoselov K (2012) Graphene plasmonics. Nat Photonics 6(11):749–758

    Article  CAS  Google Scholar 

  32. Qi M et al (2014) Improving terahertz sheet conductivity of graphene films synthesized by atmospheric pressure chemical vapor deposition with acetylene. J Phys Chem C 118(27):15054–15060

    Article  CAS  Google Scholar 

  33. Choi H et al (2009) Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene. Appl Phys Lett 94(17):172102

    Article  Google Scholar 

  34. Dawlaty JM et al (2008) Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl Phys Lett 93(13):131905

    Article  Google Scholar 

  35. Zhou Y et al (2013) Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene. Phys Chem Chem Phys 15(14):5084–5090

    Article  CAS  Google Scholar 

  36. Winnerl S et al (2011) Carrier relaxation in epitaxial graphene photoexcited near the Dirac point. Phys Rev Lett 107(23):237401

    Article  CAS  Google Scholar 

  37. von Cube F et al (2013) From isolated metaatoms to photonic metamaterials: evolution of the plasmonic near-field. Nano Lett 13(2):703–708

    Article  Google Scholar 

  38. Liu N, Kaiser S, Giessen H (2008) Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv Mater 20(23):4521–4525

    Article  CAS  Google Scholar 

  39. Liu N, Giessen H (2008) Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling. Opt Express 16(26):21233–21238

    Article  Google Scholar 

  40. Liu N et al (2009) Stereometamaterials. Nat Photonics 3:157–162

    Article  CAS  Google Scholar 

  41. Dong Z-G et al (2010) Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars. Opt Express 18(17):18229–18234

    Article  CAS  Google Scholar 

  42. Cao W et al (2012) Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt Lett 37(16):3366–3368

    Article  CAS  Google Scholar 

  43. Randall C, Rawcliffe R (1967) Refractive indices of germanium, silicon, and fused quartz in the far infrared. Appl Opt 6(11):1889–1895

    Article  CAS  Google Scholar 

  44. Smith D et al (1985) Handbook of optical constants of solids. Handb Opt Constants Solids 1:369–406

    Article  Google Scholar 

  45. Falkovsky L (2008) Optical properties of graphene. J Phys: Conf Series. IOP Publishing 129(1):012004

  46. Ding J et al. (2014) Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows. Sci Reports 4:6128

  47. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302

    Article  Google Scholar 

  48. Papasimakis N et al (2013) The magnetic response of graphene split-ring metamaterials. Light: Sci Appl 2(7), e78

    Article  Google Scholar 

  49. Kuzmenko A et al (2008) Universal optical conductance of graphite. Phys Rev Lett 100(11):117401

    Article  CAS  Google Scholar 

  50. Li Z et al (2008) Dirac charge dynamics in graphene by infrared spectroscopy. Nat Phys 4(7):532–535

    Article  CAS  Google Scholar 

  51. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2):1086–1101

    Article  CAS  Google Scholar 

  52. Hanson GW (2008) Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J Appl Phys 104(8):084314

    Article  Google Scholar 

  53. Linden S et al (2004) Magnetic response of metamaterials at 100 terahertz. Science 306(5700):1351–1353

    Article  CAS  Google Scholar 

  54. Enkrich C et al (2005) Magnetic metamaterials at telecommunication and visible frequencies. Phys Rev Lett 95(20):203901

    Article  CAS  Google Scholar 

  55. Corrigan T et al (2008) Optical plasmonic resonances in split-ring resonator structures: an improved LC model. Opt Express 16(24):19850–19864

    Article  CAS  Google Scholar 

  56. Zhang J et al (2014) Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing. ACS Nano 8(4):3796–3806

    Article  CAS  Google Scholar 

  57. Wen X, Zheng J (2014) Broadband THz reflective polarization rotator by multiple plasmon resonances. Opt Express 22(23):28292

    Article  Google Scholar 

  58. Hwang E, Adam S, Sarma SD (2007) Carrier transport in two-dimensional graphene layers. Phys Rev Lett 98(18):186806

    Article  CAS  Google Scholar 

  59. Horng J et al (2011) Drude conductivity of Dirac fermions in graphene. Phys Rev B 83(16):165113

    Article  Google Scholar 

  60. Fan Y et al (2013) Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators. Opt Lett 38(24):5410–5413

    Article  CAS  Google Scholar 

  61. Ouyang Y et al (2006) Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors. Appl Phys Lett 89(20):203107

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11374240, No. 61265005), Ph.D. Programs Foundation of Ministry of Education of China (No. 20136101110007), Key Laboratory Science Research Plan of Shaanxi Education Department (13JS101), and National Key Basic Research Program (2014CB339800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Yao, Z., Hu, F. et al. Manipulating Magnetoinductive Coupling with Graphene-Based Plasmonic Metamaterials in THz Region. Plasmonics 11, 963–970 (2016). https://doi.org/10.1007/s11468-015-0130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0130-0

Keywords

Navigation