Skip to main content
Log in

Mechanical analysis of PA66 under combined shear–compression

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The large-strain mechanical behavior of PA66 was investigated using shear–compression specimens (SCS) with two opposite slots machined at different angles (15°, 30°, 45°, and 50°). Results show that strain rate and slot angle affect the equivalent stress in different levels. Slot angle sensitivity affects both flow stress and hardening characteristics, and strain rate influences elastic deformation. Increasing the strain rate gradually increases the equivalent stress. SCS with a slot angle of 30° exhibits the largest equivalent stress and the greatest effect of strain rate. The stress–strain curve differs between cylindrical specimens and SCS under quasi-static conditions. The yield stress obtained by the cylindrical specimens is higher than that of SCS. A constitutive model is modified based on the Drucker–Prager criterion to describe the effect of hydrostatic pressure and strain rate on the equivalent yield stress of polymer materials. The theoretical formula predictions are consistent with experimental results, thereby confirming the feasibility of this constitutive relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Needleman, V. Tvergaard, Int. J. Solids Struct. 32, 2571 (1995)

    Article  Google Scholar 

  2. G. Camacho, Comput. Method. Appl. Mech. Eng. 142, 269 (1997)

    Article  ADS  Google Scholar 

  3. J.R. Klepaczko, Int. J. Impact Eng. 15, 25 (1994)

    Article  Google Scholar 

  4. T. Jin, Z. Zhou, X. Shu, Z. Wang, G. Wu, Z. Liu, Appl. Phys. A Mater. 122, 1 (2016)

    Article  ADS  Google Scholar 

  5. M. Vural, A. Molinari, N. Bhattacharyya, Exp. Mech. 51, 263 (2011)

    Article  Google Scholar 

  6. A. Dorogoy, D. Rittel, A. Godinger, Exp. Mech. 55, 1627 (2015)

    Article  Google Scholar 

  7. D.W. Holmes, J.G. Loughran, H. Suehrcke, Mech. Time Depend. Mater. 10, 281 (2006)

    Article  ADS  Google Scholar 

  8. F. Sadeghi, M. Fereydoon, A. Ajji, Adv. Polym. Technol. 32, 53 (2013)

    Article  Google Scholar 

  9. A.C. Cefalas, N. Vassilopoulos, E. Sarantopoulou, Z. Kollia, C. Skordoulis, Appl. Phys. A 70, 21 (2000)

    Article  ADS  Google Scholar 

  10. G. Bles, S.P. Gadaj, W.K. Nowacki, A. Tourabi, Arch. Mech. 54, 155 (2002)

    Google Scholar 

  11. H. Pouriayevali, S. Arabnejad, Y.B. Guo, V.P.W. Shim, Int. J. Impact Eng. 62, 35 (2013)

    Article  Google Scholar 

  12. S.A. Mooneghi, A.A. Gharehaghaji, H. Hosseini-Toudeshky, G. Torkaman, Polym. Eng. Sci. 55, 1805 (2014)

    Article  Google Scholar 

  13. C. Damm, H. Münstedt, Appl. Phys. A Mater. 91, 479 (2008)

    Article  ADS  Google Scholar 

  14. T. Jin, Z. Zhou, X. Shu, Z. Wang, G. Wu, Polym. Test. 51, 148 (2016)

    Article  Google Scholar 

  15. A. Khan, B. Farrokh, Int. J. Plasticity 22, 1506 (2006)

    Article  Google Scholar 

  16. G.H.B. Donato, M. Bianchi, J. Mater. Res. Technol. 1, 2 (2012)

    Article  Google Scholar 

  17. K. Ravi-Chandar, Z. Ma, Mech. Time Depend. Mater. 4, 333 (2000)

    Article  ADS  Google Scholar 

  18. M. Vural, G. Ravichandran, D. Rittel, Metall. Mater. Trans. A 34, 2873 (2003)

    Article  Google Scholar 

  19. E. Ghorbel, Int. J. Plasticity 24, 2032–2058 (2008)

    Article  Google Scholar 

  20. D. Rittel, S. Lee, G. Ravichandran, Exp. Mech. 42, 58 (2002)

    Article  Google Scholar 

  21. B. Farrokh, A.S. Khan, Eur. J. Mech. A Solid. 29, 274 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11172195). The financial contribution is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Q., Jin, T., Chen, S. et al. Mechanical analysis of PA66 under combined shear–compression. Appl. Phys. A 123, 365 (2017). https://doi.org/10.1007/s00339-017-0988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0988-0

Keywords

Navigation