Skip to main content
Log in

Large strain mechanical behavior of 1018 cold-rolled steel over a wide range of strain rates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The large-strain constitutive behavior of cold-rolled 1018 steel has been characterized at strain rates ranging from \(\dot \varepsilon = 10^{ - 3} \) to 5 × 104 s−1 using a newly developed shear compression specimen (SCS). The SCS technique allows for a seamless characterization of the constitutive behavior of materials over a large range of strain rates. The comparison of results with those obtained by cylindrical specimens shows an excellent correlation up to strain rates of 104 s−1. The study also shows a marked strain rate sensitivity of the steel at rates exceeding 100 s−1. With increasing strain rate, the apparent average strain hardening of the material decreases and becomes negative at rates exceeding 5000 s−1. This observation corroborates recent results obtained in torsion tests, while the strain softening was not clearly observed during dynamic compression of cylindrical specimens. A possible evolution scheme for shear localization is discussed, based on the detailed characterization of deformed microstructures. The Johnson-Cook constitutive model has been modified to represent the experimental data over a wide range of strain rates as well as to include heat-transfer effects, and model parameters have been determined for 1018 cold-rolled steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Meyers: Dynamic Behavior of Materials, John Wiley & Sons, New York, NY, 1994.

    Google Scholar 

  2. H. Kolsky: P. Phys. Soc. London, 1949, vol. 62-B, pp. 676–700.

    Article  Google Scholar 

  3. R.J. Clifton and R.W. Klopp: Metals Handbook, 9th ed., ASM INTERNATIONAL, Metals Park, OH, 1986, vol. 8, p. 230.

    Google Scholar 

  4. J. Duffy, J.D. Campbell, and R.H. Hawley: J. Appl. Mech, 1971, vol. 38, pp. 83–91.

    Google Scholar 

  5. A. Marchand and J. Duffy: J. Mech. Phys. Solids, 1988, vol. 36(3), pp. 251–83.

    Article  Google Scholar 

  6. J. Duffy and Y.C. Chi: Mater. Sci. Eng. A-Struct., 1992, vol. 157(2), pp. 195–210.

    Article  Google Scholar 

  7. A. Gilat and X.R. Wu: Int. J. Plasticity, 1997, vols. 6–7, pp. 611–32.

    Article  Google Scholar 

  8. A. Gilat and C.S. Cheng: Int. J. Plasticity, 2002, vols. 5–6, pp. 787–99.

    Article  Google Scholar 

  9. M.A. Meyers, L.W. Meyer, K.S. Vecchio, and U. Andrade: J. Phys. IV, 1991, vol. 1 (C3), pp. 11–17.

    Google Scholar 

  10. D. Rittel, S. Lee, and G. Ravichandran: Exp. Mech., 2002, vol. 42(1), pp. 58–64.

    Article  CAS  Google Scholar 

  11. D. Rittel, G. Ravichandran, and S. Lee: Mech. Mater., 2002, vol. 34(10), pp. 627–42.

    Article  Google Scholar 

  12. G.I. Taylor and H. Quinney: P. R. Soc. London, 1934, vol. A143, pp. 307–26.

    Google Scholar 

  13. Y. Bai and B. Dodd: Adiabatic Shear Localization: Occurrence, Theories, and Applications, Pergamon Press, Oxford, UK, 1992.

    Google Scholar 

  14. L.S. Costin and J. Duffy: J. Eng. Mater.-Trans. ASME, 1979, vol. 101(3), pp. 258–64.

    CAS  Google Scholar 

  15. K.A. Hartley, J. Duffy, and R.H. Hawley: J. Mech. Phys. Solids, 1987, vol. 35(3), pp. 283–301.

    Article  Google Scholar 

  16. R. Kapoor and S. Nemat-Nasser: Mech. Mater., 1998 vol. 27, pp. 1–12.

    Article  Google Scholar 

  17. C.S. Cheng: Ph.D. Thesis, The Ohio State University, Columbus, OH, 1999.

    Google Scholar 

  18. G.R. Johnson and W.H. Cook: Proc. 7th Int. Symp. on Ballistics, The Hague, The Netherlands, 1983, pp. 541–47.

  19. G.T. Gray III: ASM Handbook, ASM INTERNATIONAL, Metals Park, OH, 2000, vol. 8, pp. 462–76.

    Google Scholar 

  20. Y.B. Xu, Z.G. Wang, X.L. Huang, D. Xing, and Y.L. Bai: Mater. Sci. Eng., 1989, vol. A114, pp. 81–87.

    CAS  Google Scholar 

  21. J.D. Campbell and W.G. Ferguson: Phil. Mag., 1970, vol. 21, pp. 63–75.

    CAS  Google Scholar 

  22. J.J. Mason, A.J. Rosakis, and G. Ravichandran: Mech. Mater., 1994, vol. 17, pp. 135–45.

    Article  Google Scholar 

  23. D. Rittel: Mech. Mater., 1999, vol. 31(2), pp. 131–39.

    Article  Google Scholar 

  24. P.R. Dixon and D.J. Parry: J. Phys. IV, 1991, vol. 1(C3), pp. 85–92.

    Google Scholar 

  25. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982, pp. 120–23.

    Google Scholar 

  26. W. Tong, R.J. Clifton, and S. Huang: J. Mech. Phys. Solids, 1992, vol. 40(6), pp. 1251–94.

    Article  CAS  Google Scholar 

  27. Y. Estrin, A. Molinari, and S. Mercier: J. Eng. Mater. and Tech.-Trans. ASME, 1997, vol. 119(4), pp. 322–31.

    CAS  Google Scholar 

  28. P.S. Follansbee: in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, M.L. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel Dekker Inc., New York, NY, 1986, pp. 451–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vural, M., Ravichandran, G. & Rittel, D. Large strain mechanical behavior of 1018 cold-rolled steel over a wide range of strain rates. Metall Mater Trans A 34, 2873–2885 (2003). https://doi.org/10.1007/s11661-003-0188-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0188-8

Keywords

Navigation