Skip to main content
Log in

Benchmarking the penetration-resistance efficiency of multilayer graphene sheets due to spacing the graphene layers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the penetration-resistance efficiency of single-layer and multilayer graphene sheets has been investigated by means of the multiscale approach. The employed multiscale approach has been implemented by establishing a direct correlation between the finite element method and the molecular dynamics approach and validated by comparing its results with those of the existing experimental works. Since by using numerous techniques, a new class of graphene sheets can be fabricated in which the graphene layers are spaced farther apart (more than the usual distance between layers), this paper has concentrated on the optimal spacing between graphene layers with the goal of improving the impact properties of graphene sheets as important candidates for novel impact-resistant panels. For this purpose, the relative protection (protection with respect to weight) values of graphene sheets were obtained, and it was observed that the relative protection of a single-layer graphene sheet is about 3.64 times that of a 20-layer graphene sheet. This study also showed that a spaced multilayer graphene sheet, with its inter-layer distance being 20 times the usual spacing between ordinary graphene layers, has an impact resistance which is about 20 % higher than that of an ordinary 20-layer graphene sheet. The findings of this paper can be appropriately used in the design and fabrication of future-generation impact-resistant protective panels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Sadeghzadeh, Nanoparticle mass detection by single and multilayer graphene sheets: theory and simulations. Appl. Math. Model (2016). doi:10.1016/j.apm.2016.03.051

  2. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng et al., Roll-to-roll production of 30 in. graphene films for transparent electrodes. Nat. Nanotecnol. 5, 574–578 (2010)

    Article  ADS  Google Scholar 

  3. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010)

    Article  ADS  Google Scholar 

  4. E. Allahyari, M. Fadaee, Analytical investigation on free vibration of circular double-layer graphene sheets including geometrical defect and surface effects. Compos. Part B Eng. 85, 259–267 (2016)

    Article  Google Scholar 

  5. X. Chen, C. Yi, C. Ke, Bending stiffness and interlayer shear modulus of few-layer graphene. Appl. Phys. Lett. 106, 101907 (2015)

    Article  ADS  Google Scholar 

  6. J. Wang, C. Xu, H. Hu, L. Wan, R. Chen, H. Zheng et al., Synthesis, mechanical, and barrier properties of LDPE/graphene nanocomposites using vinyl triethoxysilane as a coupling agent. J. Nanoparticle Res. 13, 869–878 (2011)

    Article  Google Scholar 

  7. J.-H. Lee, P.E. Loya, J. Lou, E.L. Thomas, Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science 346, 1092–1096 (2014)

    Article  ADS  Google Scholar 

  8. N.S. Anton, M.Y. Mehdi, J. Romaneh, P.J. Ouseph, R.W. Cohn, G.U. Sumanasekera, Electrostatic deposition of graphene. Nanotechnology 18, 135301 (2007)

    Article  ADS  Google Scholar 

  9. B. Gotsmann, H. Rothuizen, U. Duerig, Ballistic nanoindentation of polymers. Appl. Phys. Lett. 93, 093116 (2008)

    Article  ADS  Google Scholar 

  10. B.A. Gama, S.L. Lopatnikov, J.W. Gillespie, Hopkinson bar experimental technique: a critical review. Appl. Mech. Rev. 57, 223–250 (2004)

    Article  ADS  Google Scholar 

  11. J.A. Zukas, High Velocity Impact Dynamics (Wiley, New York, 1990)

    Google Scholar 

  12. B. Mortazavi, T. Rabczuk, Multiscale modeling of heat conduction in graphene laminates. Carbon 85, 1–7 (2015)

    Article  Google Scholar 

  13. R. Khare, S.L. Mielke, G.C. Schatz, T. Belytschko, Multiscale coupling schemes spanning the quantum mechanical, atomistic forcefield, and continuum regimes. Comput. Methods Appl. Mech. Eng. 197, 3190–3202 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, T. Rabczuk, A computational library for multiscale modeling of material failure. Comput. Mech. 53, 1047–1071 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Talebi, M. Silani, S.P. Bordas, P. Kerfriden, T. Rabczuk, Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. Int. J. Multiscale Comput. Eng. 11, 527–541 (2013)

    Article  Google Scholar 

  16. M. Silani, S. Ziaei-Rad, H. Talebi, T. Rabczuk, A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoret. Appl. Fract. Mech. 74, 30–38 (2014)

    Article  Google Scholar 

  17. C.T. Lim, V.B.C. Tan, C.H. Cheong, Perforation of high-strength double-ply fabric system by varying shaped projectiles. Int. J. Impact Eng. 27, 577–591 (2002)

    Article  Google Scholar 

  18. B. Artur, L. Daniel, B. Noelia, U. Seyithan, M. Rainhard, M. Sharali et al., Nanostructured arrays of stacked graphene sheets. Nanotechnology 23, 415302 (2012)

    Article  Google Scholar 

  19. S. Sadeghzadeh, On the oblique collision of gaseous molecules with graphene nanosheets. Mol. Simul. 42, 1–9 (2016)

    Article  Google Scholar 

  20. Y.Y. Zhang, C.M. Wang, Y. Cheng, Y. Xiang, Mechanical properties of bilayer graphene sheets coupled by sp3 bonding. Carbon 49, 4511–4517 (2011)

    Article  Google Scholar 

  21. Q. Lu, M. Arroyo, R. Huang, Elastic bending modulus of monolayer graphene. J. Phys. D Appl. Phys. 42, 102002 (2009)

    Article  ADS  Google Scholar 

  22. M. Korayem, S. Sadeghzadeh, V. Rahneshin, A new multiscale methodology for modeling of single and multi-body solid structures. Comput. Mater. Sci. 63, 1–11 (2012)

    Article  Google Scholar 

  23. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  MATH  Google Scholar 

  24. W. Zhiyong, L. Nan, S. Zujin, G. Zhennan, Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology 21, 175602 (2010)

    Article  Google Scholar 

  25. J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566–5568 (1989)

    Article  ADS  Google Scholar 

  26. S. Sadeghzadeh, Equivalent mechanical boundary conditions for single layer graphene sheets. Micro Nano Lett. 11, 248–252 (2016)

    Article  Google Scholar 

  27. M. Korayem, S. Sadeghzadeh, V. Rahneshin, A. Homayooni, M. Safa, Precise manipulation of metallic nanoparticles: multiscale analysis. Comput. Mater. Sci. 67, 11–20 (2013)

    Article  Google Scholar 

  28. H. Talebi, M. Silani, T. Rabczuk, Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv. Eng. Softw. 80, 82–92 (2015)

    Article  Google Scholar 

  29. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)

    Article  Google Scholar 

  30. B.Z. Jang, A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci. 43, 5092–5101 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sadeghzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghzadeh, S. Benchmarking the penetration-resistance efficiency of multilayer graphene sheets due to spacing the graphene layers. Appl. Phys. A 122, 655 (2016). https://doi.org/10.1007/s00339-016-0186-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0186-5

Keywords

Navigation