Skip to main content
Log in

Engineering gold alloys for plasmonics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate the formation of metal alloys in Au–Ag, Au–Cu and Au–Pd systems and the experimental determination of their optical properties using optical transmission and reflection spectroscopy. The optical constants define the plasmon resonance wavelength and electromagnetic field local intensity. However, the optical constants behavior cannot be precisely modeled based on the data of pure metals due to unknown morphology and composition of the alloy. It has to be determined experimentally. We demonstrate the surface-enhanced Raman scattering using alloy metals. Depending on the metal to which molecules are adsorbed, we observe enhancement of different Raman modes. It is mainly due to the chemical enhancement effect between metal and molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Wei, Y. Liu, W. Dong, Y. Zhang, C. Huang, Y. Sun, X. Chen, N. Dai, Surface-dependent localized surface plasmon resonances in CuS nanodisks. ACS Appl. Mater. Interfaces 5, 10473–10477 (2013)

    Article  Google Scholar 

  2. M.M. Kjeldsen, J.L. Hansen, T.G. Pedersen, P. Gaiduk, A.N. Larsen, Tuning the plasmon resonance of metallic tin nanocrystals in Si-based materials. Apply. Phys. A 100, 31–37 (2010)

    Article  ADS  Google Scholar 

  3. S. Franzen, C. Rhodes, M. Cerruti, R.W. Gerber, M. Losego, J.P. Maria, D.E. Aspnes, Plasmonic phenomena in indium tin oxide and ITO–Au hybrid films. Opt. Lett. 34, 2867–2869 (2009)

    Article  ADS  Google Scholar 

  4. Y. Nishijima, S. Akiyama, Unusual optical properties of Au/Ag alloy nanostructures. Opt. Mater. Express 2, 1226–1235 (2012)

    Article  Google Scholar 

  5. Y. Nishijima, Y. Hashimoto, L. Rosa, Jacob B. Khurgin, S. Juodkazis, Scaling rules of SERS intensity. Adv. Opt. Mater. 2, 382–388 (2014). doi:10.1002/adom.201300493

  6. Y. Nishijima, L. Rosa, S. Juodkazis, Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting. Opt. Express 20, 11466–11477 (2012)

    Article  ADS  Google Scholar 

  7. Y. Nishijima, J.B. Khurgin, L. Rosa, H. Fujiwara, S. Juodkazis, Randomization of gold nano-brick arrays: a tool for SERS enhancement. Opt. Express 21, 13502–13514 (2013)

    Article  ADS  Google Scholar 

  8. Y. Nishijima, L. Rosa, S. Juodkazis, Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles. Appl. Phys. A 115(2), 409–414 (2014). doi:10.1007/s00339-013-8057-9

    Article  ADS  Google Scholar 

  9. K.S. Lee, M.A. El-Sayed, Gold and silver nanoparticles in sensing and imaging and sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110, 19220–19225 (2006)

    Article  Google Scholar 

  10. N.E. Motl, E.E. Annan, I.T. Sines, L. Jensen, R.E. Schaak, Au and Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory. J. Phys. Chem. C 114, 19263–19269 (2010)

    Article  Google Scholar 

  11. F. Hubenthal, N. Borg, F. Träger, Optical properties and ultrafast electron dynamics in gold and silver alloy and core and shell nanoparticle. Appl. Phys. B Lasers Opt. 93, 39–45 (2008)

    Article  ADS  Google Scholar 

  12. P.B. Johnson, R.W. Christy, Optical constants of copper and nickel as a function of temperature. Phys. Rev. B 11, 1315–1323 (1975)

    Article  ADS  Google Scholar 

  13. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  14. P.B. Johnson, R.W. Christy, Optical constants of transition metals: Ti, V, Cr, Mn, Fe Co, Ni, and Pd. Phys. Rev. B 9, 5056–5070 (1974)

    Article  ADS  Google Scholar 

  15. ASM, ASM Handbook: Volume 3: Alloy phase diagrams, 10th edn. ASM International, Ohio, USA (1992)

  16. H. Kobayashi, M. Yamauchi, R. Ikeda and H. Kitagawa, Atomic-level Pd–Au alloying and controllable hydrogen-absorption properties in size-controlled nanoparticles synthesized by hydrogen reduction. Chem. Comm. 4806–4808 (2009)

  17. H. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, Atomic-level PdPt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. J. Am. Chem. Soc. 132, 5576–5577 (2010)

    Article  Google Scholar 

  18. K. Juodkazis, J. Juodkazyte, P. Kalinauskas, E. Jelmakas, S. Juodkazis, Photoelectrolysis of water: solar hydrogen-achievements and perspectives. Opt. Express Energy Express 18, A147–A160 (2010)

    Article  Google Scholar 

  19. K. Juodkazis, J. Juodkazyte, B. Sebeka, S. Juodkazis, Reversible hydrogen evolution and oxidation on Pt electrode mediated by molecular ion. Appl. Surf. Sci. 290, 13–17 (2014)

    Article  ADS  Google Scholar 

  20. S. Jayawardhana, L. Rosa, S. Juodkazis, P.R. Stoddart, Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism. Sci. Rep. 3, 2335 (2013). doi:10.1038/srep02335

    Article  ADS  Google Scholar 

  21. G. Gervinskas, G. Seniutinas, J.S. Hartley, S. Kandasamy, P.R. Stoddart, N.F. Fahim, S. Juodkazis, Surface-enhanced Raman scattering sensing on black silicon. Ann. der Phys. 525, 907–914 (2013)

    Article  ADS  Google Scholar 

  22. A. Žukauskas, M. Malinauskas, A. Kadys, G. Gervinskas, G. Seniutinas, S. Kandasamy, S. Juodkazis, Black silicon: substrate for laser 3D micro/nano-polymerization. Opt. Express 12, 6901–6909 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

YN gratefully thanks Prof. Toshihiko Baba, from Yokohama National University for fruitful discussions and granting access to fabrication and characterization facilities. This work was financially supported by Amada Foundation, The Hattori Hokokai Foundation, and JSPS Grants-in-Aid for Scientific Research. SJ is grateful for support via Australian Research Council DP130101205 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Nishijima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishijima, Y., Hashimoto, Y., Seniutinas, G. et al. Engineering gold alloys for plasmonics. Appl. Phys. A 117, 641–645 (2014). https://doi.org/10.1007/s00339-014-8716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8716-5

Keywords

Navigation