Skip to main content
Log in

On the correlation between droplet volume and irradiation conditions in the laser forward transfer of liquids

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The analysis of the morphology of droplets printed through laser-induced forward transfer (LIFT) of liquid films shows that: (i) the droplet volume is linearly related with the energy of the laser pulse that originated it, (ii) the liquid ejection process is activated by an energy density threshold F 0, and (iii) the droplet volume can be correlated with a dimensional parameter of the laser beam through an oversimple model that states that the amount of printed liquid equals the liquid contained in the cylindrical portion of an irradiated film whose base corresponds to the cross-sectional area of the beam with energy density higher than F 0. Although these issues seem to describe correctly the LIFT process, some problematic instances arise from them. Thus, the linear relation between droplet volume and laser pulse energy seems to be inconsistent with the existence of the threshold F 0. On the other hand, the compatibility between the model and the aforementioned linear relation requires to be explained. Finally, the model is based on the idea that transfer takes place in a way analogous to the LIFT of solid films, but time-resolved imaging studies have demonstrated that liquid ejection follows a dynamics which seems quite unsuited with that idea. In this work previous results are re-analyzed and new experiments are performed in an attempt to clarify these questions. It is then shown that the inconsistencies pointed out are only apparent, and that the validity of the model is limited to irradiation conditions where the beam dimensions are significantly larger than the thickness of the liquid film. Furthermore, an explanation is provided for the dependence of the success and failure of the model on those irradiation conditions in terms of the diverse liquid ejection dynamics taking place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In fact, EE 0 corresponds to the volume equivalent to the shaded area in the three-dimensional plot.

References

  1. C.B. Arnold, P. Serra, A. Piqué, Mater. Res. Soc. Bull. 32, 23 (2007)

    Article  Google Scholar 

  2. M.L. Levene, R.D. Scott, B.W. Siryj, Appl. Opt. 9, 2260 (1970)

    Article  ADS  Google Scholar 

  3. J. Bohandy, B.F. Kim, F.J. Adrian, J. Appl. Phys. 60, 1538 (1986)

    Article  ADS  Google Scholar 

  4. R.C.Y. Auyeung, H. Kim, S.A. Mathews, A. Piqué, J. Laser Micro Nanoeng. 2, 21 (2007)

    Article  Google Scholar 

  5. L. Rapp, A.K. Diallo, A.P. Alloncle, C. Videlot-Ackermann, F. Fages, P. Delaporte, Appl. Phys. Lett. 95, 171109 (2009)

    Article  ADS  Google Scholar 

  6. H. Kim, R.C.Y. Auyeung, S.H. Lee, A.L. Huston, A. Pique, Appl. Phys. A 96, 441 (2009)

    Article  ADS  Google Scholar 

  7. L. Rapp, J. Ailuno, A.P. Alloncle, P. Delaporte, Opt. Express 19, 21563 (2011)

    Article  ADS  Google Scholar 

  8. M. Duocastella, H. Kim, P. Serra, A. Piqué, Appl. Phys. A 106, 471 (2012)

    Article  ADS  Google Scholar 

  9. C. Boutopoulos, V. Tsouti, D. Goustouridis, S. Chatzandroulis, I. Zergioti, Appl. Phys. Lett. 93, 191109 (2008)

    Article  ADS  Google Scholar 

  10. P. Serra, M. Colina, J.M. Fernández-Pradas, L. Sevilla, J.L. Morenza, Appl. Phys. Lett. 85, 1639 (2004)

    Article  ADS  Google Scholar 

  11. M. Colina, P. Serra, J.M. Fernández-Pradas, L. Sevilla, J.L. Morenza, Biosens. Bioelectron. 20, 1638 (2005)

    Article  Google Scholar 

  12. V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulos, M. Dinescu, A. Popescu, C. Fotakis, Biomed. Microdevices 10, 719 (2008)

    Article  Google Scholar 

  13. A. Palla-Papavlu, I. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, M. Dinescu, Appl. Phys. A 102, 651 (2011)

    Article  ADS  Google Scholar 

  14. B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvari, D.B. Chrisey, A. Szabo, A. Nogradi, Tissue Eng. 11, 1817 (2005)

    Article  Google Scholar 

  15. B.R. Ringeisen, C.M. Othon, J.A. Barron, D. Young, B.J. Spargo, Biotechnol. J. 1, 930 (2006)

    Article  Google Scholar 

  16. N.T. Kattamis, P.E. Purnick, R. Weiss, C.B. Arnold, Appl. Phys. Lett. 91, 171120 (2007)

    Article  ADS  Google Scholar 

  17. M. Colina, M. Duocastella, J.M. Fernández-Pradas, P. Serra, J.L. Morenza, J. Appl. Phys. 99, 084909 (2006)

    Article  ADS  Google Scholar 

  18. M. Duocastella, J.M. Fernández-Pradas, P. Serra, J.L. Morenza, Appl. Phys. A 93, 941 (2008)

    Article  ADS  Google Scholar 

  19. M. Duocastella, M. Colina, J.M. Fernández-Pradas, P. Serra, J.L. Morenza, Appl. Surf. Sci. 253, 7855 (2007)

    Article  ADS  Google Scholar 

  20. P. Serra, M. Duocastella, J.M. Fernández-Pradas, J.L. Morenza, Appl. Surf. Sci. 255, 5342 (2009)

    Article  ADS  Google Scholar 

  21. V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, C. Fotakis, Thin Solid Films 516, 6504 (2008)

    Article  ADS  Google Scholar 

  22. M. Duocastella, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, J. Appl. Phys. 106, 084907 (2009)

    Article  ADS  Google Scholar 

  23. M. Duocastella, J.M. Fernández-Pradas, P. Serra, J.L. Morenza, Appl. Phys. A 93, 453 (2008)

    Article  Google Scholar 

  24. M. Duocastella, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, Thin Solid Films 518, 5321 (2010)

    Article  ADS  Google Scholar 

  25. C. Unger, M. Gruene, L. Koch, J. Koch, B.N. Chichkov, Appl. Phys. A 103, 271 (2011)

    Article  ADS  Google Scholar 

  26. A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Appl. Phys. A 106, 479 (2012)

    Article  ADS  Google Scholar 

  27. M. Duocastella, J.M. Fernández-Pradas, P. Serra, J.L. Morenza, Appl. Surf. Sci. 257, 2825 (2011)

    Article  ADS  Google Scholar 

  28. M. Gruene, C. Unger, L. Koch, A. Deiwick, B.N. Chichkov, Biomed. Eng. Online 10, 19 (2011)

    Article  Google Scholar 

  29. M. Duocastella, A. Patrascioiu, V. Dinca, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, Appl. Surf. Sci. 257, 5255 (2011)

    Article  ADS  Google Scholar 

  30. A. Pearson, E. Cox, J.R. Blake, S.R. Otto, Eng. Anal. Bound. Elem. 28, 295 (2004)

    Article  MATH  Google Scholar 

  31. C.B. Schaffer, N. Nishimura, E.N. Glezer, A.M.T. Kim, E. Mazur, Opt. Express 10, 196 (2002)

    ADS  Google Scholar 

  32. A. Vogel, S. Busch, U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996)

    Article  ADS  Google Scholar 

  33. E.A. Brujan, A. Vogel, J. Fluid Mech. 558, 281 (2006)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work is funded by MCI of the Spanish Government (Projects MAT2010-15905 and CSD2008-00023), by Fondo Europeo de Desarrollo Regional (FEDER), and by the EU project eLIFT (Grant agreement 247868).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Serra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duocastella, M., Patrascioiu, A., Fernández-Pradas, J.M. et al. On the correlation between droplet volume and irradiation conditions in the laser forward transfer of liquids. Appl. Phys. A 109, 5–14 (2012). https://doi.org/10.1007/s00339-012-7047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7047-7

Keywords

Navigation